The integration of large language models (LLMs), such as those in the Generative Pre-trained Transformers (GPT) series, into medical education has the potential to transform learning experiences for students and elevate their knowledge, skills, and competence. Drawing on a wealth of professional and academic experience, we propose that LLMs hold promise for revolutionizing medical curriculum development, teaching methodologies, personalized study plans and learning materials, student assessments, and more. However, we also critically examine the challenges that such integration might pose by addressing issues of algorithmic bias, overreliance, plagiarism, misinformation, inequity, privacy, and copyright concerns in medical education. As we navigate the shift from an information-driven educational paradigm to an artificial intelligence (AI)–driven educational paradigm, we argue that it is paramount to understand both the potential and the pitfalls of LLMs in medical education. This paper thus offers our perspective on the opportunities and challenges of using LLMs in this context. We believe that the insights gleaned from this analysis will serve as a foundation for future recommendations and best practices in the field, fostering the responsible and effective use of AI technologies in medical education.
Background Anxiety and depression are the most common mental disorders worldwide. Owing to the lack of psychiatrists around the world, the incorporation of artificial intelligence (AI) into wearable devices (wearable AI) has been exploited to provide mental health services. Objective This review aimed to explore the features of wearable AI used for anxiety and depression to identify application areas and open research issues. Methods We searched 8 electronic databases (MEDLINE, PsycINFO, Embase, CINAHL, IEEE Xplore, ACM Digital Library, Scopus, and Google Scholar) and included studies that met the inclusion criteria. Then, we checked the studies that cited the included studies and screened studies that were cited by the included studies. The study selection and data extraction were carried out by 2 reviewers independently. The extracted data were aggregated and summarized using narrative synthesis. Results Of the 1203 studies identified, 69 (5.74%) were included in this review. Approximately, two-thirds of the studies used wearable AI for depression, whereas the remaining studies used it for anxiety. The most frequent application of wearable AI was in diagnosing anxiety and depression; however, none of the studies used it for treatment purposes. Most studies targeted individuals aged between 18 and 65 years. The most common wearable device used in the studies was Actiwatch AW4 (Cambridge Neurotechnology Ltd). Wrist-worn devices were the most common type of wearable device in the studies. The most commonly used category of data for model development was physical activity data, followed by sleep data and heart rate data. The most frequently used data set from open sources was Depresjon. The most commonly used algorithm was random forest, followed by support vector machine. Conclusions Wearable AI can offer great promise in providing mental health services related to anxiety and depression. Wearable AI can be used by individuals for the prescreening assessment of anxiety and depression. Further reviews are needed to statistically synthesize the studies’ results related to the performance and effectiveness of wearable AI. Given its potential, technology companies should invest more in wearable AI for the treatment of anxiety and depression.
Background Learning disabilities are among the major cognitive impairments caused by aging. Among the interventions used to improve learning among older adults are serious games, which are participative electronic games designed for purposes other than entertainment. Although some systematic reviews have examined the effectiveness of serious games on learning, they are undermined by some limitations, such as focusing on older adults without cognitive impairments, focusing on particular types of serious games, and not considering the comparator type in the analysis. Objective This review aimed to evaluate the effectiveness of serious games on verbal and nonverbal learning among older adults with cognitive impairment. Methods Eight electronic databases were searched to retrieve studies relevant to this systematic review and meta-analysis. Furthermore, we went through the studies that cited the included studies and screened the reference lists of the included studies and relevant reviews. Two reviewers independently checked the eligibility of the identified studies, extracted data from the included studies, and appraised their risk of bias and the quality of the evidence. The results of the included studies were summarized using a narrative synthesis or meta-analysis, as appropriate. Results Of the 559 citations retrieved, 11 (2%) randomized controlled trials (RCTs) ultimately met all eligibility criteria for this review. A meta-analysis of 45% (5/11) of the RCTs revealed that serious games are effective in improving verbal learning among older adults with cognitive impairment in comparison with no or sham interventions (P=.04), and serious games do not have a different effect on verbal learning between patients with mild cognitive impairment and those with Alzheimer disease (P=.89). A meta-analysis of 18% (2/11) of the RCTs revealed that serious games are as effective as conventional exercises in promoting verbal learning (P=.98). We also found that serious games outperformed no or sham interventions (4/11, 36%; P=.03) and conventional cognitive training (2/11, 18%; P<.001) in enhancing nonverbal learning. Conclusions Serious games have the potential to enhance verbal and nonverbal learning among older adults with cognitive impairment. However, our findings remain inconclusive because of the low quality of evidence, the small sample size in most of the meta-analyzed studies (6/8, 75%), and the paucity of studies included in the meta-analyses. Thus, until further convincing proof of their effectiveness is offered, serious games should be used to supplement current interventions for verbal and nonverbal learning rather than replace them entirely. Further studies are needed to compare serious games with conventional cognitive training and conventional exercises, as well as different types of serious games, different platforms, different intervention periods, and different follow-up periods. Trial Registration PROSPERO CRD42022348849; https://tinyurl.com/y6yewwfa
Given the limitations of traditional approaches, wearable artificial intelligence (AI) is one of the technologies that have been exploited to detect or predict depression. The current review aimed at examining the performance of wearable AI in detecting and predicting depression. The search sources in this systematic review were 8 electronic databases. Study selection, data extraction, and risk of bias assessment were carried out by two reviewers independently. The extracted results were synthesized narratively and statistically. Of the 1314 citations retrieved from the databases, 54 studies were included in this review. The pooled mean of the highest accuracy, sensitivity, specificity, and root mean square error (RMSE) was 0.89, 0.87, 0.93, and 4.55, respectively. The pooled mean of lowest accuracy, sensitivity, specificity, and RMSE was 0.70, 0.61, 0.73, and 3.76, respectively. Subgroup analyses revealed that there is a statistically significant difference in the highest accuracy, lowest accuracy, highest sensitivity, highest specificity, and lowest specificity between algorithms, and there is a statistically significant difference in the lowest sensitivity and lowest specificity between wearable devices. Wearable AI is a promising tool for depression detection and prediction although it is in its infancy and not ready for use in clinical practice. Until further research improve its performance, wearable AI should be used in conjunction with other methods for diagnosing and predicting depression. Further studies are needed to examine the performance of wearable AI based on a combination of wearable device data and neuroimaging data and to distinguish patients with depression from those with other diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.