We theoretically consider a short quantum wire, which on both ends is connected to leads that have different temperatures. The quantum wire is assumed to be coupled to a cavity with a single-photon mode. We calculate the heat and thermoelectric currents in the quantum wire under the effect of the photon field. In the absence of the photon field, a plateau in the thermoelectric current is observed due to the thermal smearing at a high temperature gradient. In the presence of the resonance photon field, when the energy spacing between the lowest states of the quantum wire is approximately equal to the photon energy, a suppression in thermoelectric current and negativity in the heat current are seen due to the dressed electron-photon states. It is also found that the cavity with high photon energy has more influence on the thermoelectric current at a high temperature gradient.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.