Many countries are currently in a state of lockdown due to the SARS-CoV-2 pandemic. One key requirement to safely transition out of lockdown is the continuous testing of the population to identify infected subjects. Currently, detection is performed at points of care using quantitative reverse-transcription PCR, thus requiring dedicated professionals and equipment. Here, we developed a protocol based on reverse transcribed loop-mediated isothermal amplification for the detection of SARS-CoV-2. This protocol is applied directly to SARS-CoV-2 nose and throat swabs, with no RNA purification step required. We tested this protocol on over 180 suspected patients, and compared the results to those obtained using the standard method. We further succeeded in applying the protocol to self-collected saliva samples from confirmed cases. Since the proposed protocol can detect SARS-CoV-2 from saliva and provides on-the-spot results, it allows simple and continuous surveillance of the community. Impact statement Humanity is currently experiencing a global pandemic with devastating implications on human health and the economy. Most countries are gradually exiting their lockdown state. We are currently lacking rapid and simple viral detections, especially methods that can be performed in the household. Here, we applied RT-LAMP directly on human clinical swabs and self-collected saliva samples. We adjusted the method to allow simple and rapid viral detection, with no RNA purification steps. By testing our method on over 180 human samples, we determined its sensitivity, and by applying it to other viruses, we determined its specificity. We believe this method has a promising potential to be applied world-wide as a simple and cheap surveillance test for SARS-CoV-2.
Many countries are currently in a lockdown state due to the SARS-CoV-2 pandemic. One key aspect to transition safely out of lockdown is to continuously test the population for infected subjects. Currently, detection is performed at points of care using quantitative reverse-transcription PCR (RT-qPCR), and requires dedicated professionals and equipment. Here, we developed a protocol based on Reverse Transcribed Loop-Mediated Isothermal Amplification (RT-LAMP) for detection of SARS-CoV-2. This protocol is applied directly on SARS-CoV-2 nose and throat swabs, with no RNA purification step required. We tested this protocol on over 180 suspected patients, and compared its results to the standard method. We further succeeded to apply the protocol on self-sampled saliva from confirmed cases. Since the proposed protocol provides results on-the-spot, and can detect SARS-CoV-2 from saliva, it can allow simple and continuous surveillance of the community.
The human pathogenic fungus Candida albicans can switch between yeast and hyphal morphologies as a function of environmental conditions and cellular physiology. The yeast-to-hyphae morphogenetic switch is activated by well-established, kinase-based signal transduction pathways that are induced by extracellular stimuli. In order to identify possible inhibitory pathways of the yeast-to-hyphae transition, we interrogated a collection of C. albicans protein kinases and phosphatases ectopically expressed under the regulation of the TETon promoter. Proportionately more phosphatases than kinases were identified that inhibited hyphal morphogenesis, consistent with the known role of protein phosphorylation in hyphal induction. Among the kinases, we identified AKL1 as a gene that significantly suppressed hyphal morphogenesis in serum. Akl1 specifically affected hyphal elongation rather than initiation: overexpression of AKL1 repressed hyphal growth, and deletion of AKL1 resulted in acceleration of the rate of hyphal elongation. Akl1 suppressed fluid-phase endocytosis, probably via Pan1, a putative clathrin-mediated endocytosis scaffolding protein. In the absence of Akl1, the Pan1 patches were delocalized from the sub-apical region, and fluid-phase endocytosis was intensified. These results underscore the requirement of an active endocytic pathway for hyphal morphogenesis. Furthermore, these results suggest that under standard conditions, endocytosis is rate-limiting for hyphal elongation.
Reversible genomic DNA-inversions control expression of numerous bacterial molecules in the human gut, but how this relates to disease remains uncertain. By analyzing metagenomic samples from six human Inflammatory Bowel Disease (IBD) cohorts combined with mice experimentation, we identified multiple invertible regions in which a particular orientation was correlated with disease. These include the promoter of the anti-inflammatory polysaccharide-A (PSA) ofBacteroides fragilis, which is mostly oriented OFF during inflammation but switches to the ON orientation when inflammation is resolved. We further detected increased abundances ofBacteroides fragilisassociated bacteriophages in patients with the PSA OFF orientation. Isolation and analysis of aBacteroides fragilisassociated bacteriophage revealed that it induced the PSA OFF switch, thereby altering the bacterial induced immune modulation. Altogether, we reveal large-scale dynamic and reversible bacterial phase variations driven both by bacteriophages and the host inflammatory state signifying bacterial functional plasticity and suggesting potential clinical interventions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.