The development of diagnostic markers has been a long-standing interest of population geneticists as it allows clarification of taxonomic uncertainties. Historically, there has been much debate on the taxonomic status of species belonging to the Mytilus species complex (M. edulis, M. galloprovincialis and M. trossulus), and whether they are discrete species. We analysed reference pure specimens of M. edulis, M. galloprovincialis and M. trossulus, using Restriction site associated DNA (RAD) sequencing and identified over 6,000 SNP markers separating the three species unambiguously. We developed a panel of diagnostic SNP markers for the genotyping of Mytilus species complex as well as the identification of hybrids and interspecies introgression events in Mytilus species. We validated a panel of twelve diagnostic SNP markers which can be used for species genotyping. Being able to accurately identify species and hybrids within the Mytilus species complex is important for the selective mussel stock management, the exclusion of invasive species, basic physiology and bio-diversity studies.
Salmonid alphaviruses (SAVs), which include the aetiological agents of salmon pancreas disease (SPD) in farmed Atlantic salmon Salmo salar L. and sleeping disease (SD) in rainbow trout Oncorhynchus mykiss (Walbaum), are significant viral pathogens of European salmonid aquaculture. SAV is horizontally transmitted and the virus can survive for extended periods in seawater. A lack of convincing evidence for vertical transmission coupled to the fact that the SPD virus (SPDV) occurs in historically infected sites irrespective of fallow period duration suggests that a substantial reservoir of infection exists in the marine environment. We used a highly sensitive real-time PCR (qPCR) assay targeting a region of the SAV nsP1 gene to screen wild marine fish species for the presence of SAV in an attempt to identify such a potential reservoir. Screened fish species were caught in the vicinity of aquaculture activity in an area with a previous history of SAV infection (Shetland Isles, Scotland). SAV RNA was detected in internal organs (kidney and heart) from the flatfish species common dab Limanda limanda, long rough dab Hippoglossoides platessoides, and plaice Pleuronectes platessa. Based on these findings, sampling was extended to an area remote from aquaculture activity (Stonehaven Bay, NE coast of Scotland) from where heart tissues obtained from common dab also tested positive. While no virus could be cultivated from these samples, qPCR detections were shown to be SAV-specific by sequencing of an alternative gene region (E2) to that targeted by the qPCR assay. Analysis of these nucleotide sequences revealed minor differences to those previously obtained from farmed salmon, and subsequent phylogenetic analysis of an E2 dataset demonstrated a subtype V-like sequence.
Viral haemorrhagic septicaemia (VHS) is an infectious disease of farmed and wild fish and has an extensive host range in both freshwater and marine environments. In December 2012, a wrasse population consisting of ballan, Labrus bergylta (Ascanius), corkwing, Symphodus melops (L.), cuckoo, Labrus mixtus L., goldsinny, Ctenolabrus rupestris (L.), and rock cook, Centrolabrus exoletus (L.), held at a marine hatchery in the Shetland Isles, Scotland, experienced a mortality event. Approximately 10 000 wrasse were being held at the facility on behalf of an Atlantic salmon, Salmo salar L., aquaculture company prior to being deployed for the biological control of parasites on marine pen Atlantic salmon, aquaculture sites. Fish Health Inspectors from Marine Scotland Science initiated a diagnostic investigation, and subsequent diagnostic testing confirmed the site to be VHSV positive by qRT-PCR and virus isolation followed by ELISA. A VHSV genotype-specific qRT-PCR assay revealed that the isolates belonged to genotype III, the European marine strain of the virus. The virus genotype was further confirmed by nucleic acid sequencing of the partial nucleoprotein (N) and glycoprotein (G) genes followed by BLAST nucleotide searches. This study reports for the first time the detection of VHSV within multiple wrasse species and highlights the need for a comprehensive risk-based approach to the use of wrasse and other finfish species as biological controls within the aquaculture industry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.