The current paper emphasizes on the study of the water resources of Iraq. Iraq is facing a dire water crisis due to the decrease in the quantities and degradation in the qualities of the water reaching its borders with the two rivers Tigris and Euphrates. The Euphrates and Tigris rivers provide more than 98% of Iraq's water demands for the various purposes. Degradation of these rivers has become a serious problem. Analysis of the previous studies is made and the available data are collected. Most of the studies reached an important conclusion, Iraq face serious water shortage problem. Analysis and Expectation of the population size, study of the existing agricultural use and expansion of the cultivated land are presented. The consumption of water withdrawals for the three purposes Agricultural, municipal, and industrial use are analyzed and presented in the paper. In addition, the Expectations of the share per capita are made for the Future until 2100, depending on the expectations of population size and amount of water supply. The water power is studied and suggestions for the new plant are made. Furthermore, some of the discharged fresh water to the Arabian Gulf represents a loss of fresh water. Suggestion to save this loss by constructing a new dam to separate between the fresh and salt water upstream Basra city is suggested. Some of the collected data is included in the paper.
Lake Mariout located between the longitudes of 29° 49′ and 29° 56′E and latitudes of 31° 04′ and 31° 08′N in Egypt. It is situated on the southern side of Alexandria City, Egypt. The land surrounding the lake is occupied by agriculture field, population zones and fish farms. This makes the lake to serve as a sink to drain different kinds of drainage waters from surrounding catchment areas of Alexandria City. The water of Lake Mariout is pumped to the Mediterranean Sea through El-Max pump station. The water budget was computed by measuring or estimating all of the lake’s water gains and losses. Applying the hydrology budget balance for lakes takes the interaction between the inflow and the outflow water from lakes into account. It is very useful for conservation and better management of water resources. All water budget components of the lake are estimated. Groundwater amount is the most difficult component to be measured or estimated in the water budget equation. Most of the previous studies assumed that the residual of water budget to be the groundwater flow to the lake. The results show that the lake Mariout receives approximately 8.95 m3/d from the main drains which represents the major part of the inflow water to lake. The discharge of El-max pump station is also one of the largest components of the outflow water (102 m3/s), while the water loss by evaporation represents 3.2% of the outflow water from the lake. Moreover, the water gain by rainfall 0.38% of the inflow water. The Groundwater flow to/out the lake was estimated as a residual of the water budget equation. It represents 1.2% of the total inputs for the lake water budget. The result shows that the lake is under severe environmental pressure. One of that is the groundwater comes from catchments areas which may be affect the configuration and operating system management of El-Max pump station by the time running.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.