Small area estimation techniques are employed when sample data are insufficient for acceptably precise direct estimation in domains of interest. These techniques typically rely on regression models that use both covariates and random effects to explain variation between domains. However, such models also depend on strong distributional assumptions, require a formal specification of the random part of the model and do not easily allow for outlier robust inference. We describe a new approach to small area estimation that is based on modelling quantile-like parameters of the conditional distribution of the target variable given the covariates. This avoids the problems associated with specification of random effects, allowing inter-domain differences to be characterized by the variation of area-specific M-quantile coefficients. The proposed approach is easily made robust against outlying data values and can be adapted for estimation of a wide range of area specific parameters, including that of the quantiles of the distribution of the target variable in the different small areas. Results from two simulation studies comparing the performance of the M-quantile modelling approach with more traditional mixed model approaches are also provided. SUMMARYSmall area estimation techniques are employed when sample data are insufficient for acceptably precise direct estimation in domains of interest. These techniques typically rely on regression models that use both covariates and random effects to explain variation between domains. However, such models also depend on strong distributional assumptions, require a formal specification of the random part of the model and do not easily allow for outlier robust inference. We describe a new approach to small area estimation that is based on modelling quantile-like parameters of the conditional distribution of the target variable given the covariates. This avoids the problems associated with specification of random effects, allowing inter-domain differences to be characterized by the variation of area-specific M-quantile coefficients. The proposed approach is easily made robust against outlying data values and can be adapted for estimation of a wide range of area specific parameters, including that of the quantiles of the distribution of the target variable in the different small areas. Results from 2 two simulation studies comparing the performance of the M-quantile modelling approach with more traditional mixed model approaches are also provided.
Outliers are a well-known problem in survey estimation, and a variety of approaches have been suggested for dealing with them in this context. However, when the focus is on small area estimation using the survey data, much less is known -even though outliers within a small area sample are clearly much more influential than they are in the larger overall sample. To the best of our knowledge, Chambers and Tzavidis (2006) was the first published paper in small area estimation that explicitly addressed the issue of outlier robustness, using an approach based on fitting outlier robust M-quantile models to the survey data. Recently, Sinha and Rao (2009) have also addressed this issue from the perspective of linear mixed models. Both these approaches, however, use plug-in robust prediction. That is, they replace parameter estimates in optimal, but outlier sensitive, predictors by outlier robust versions. Unfortunately, this approach may involve an unacceptable prediction bias (but a low prediction variance) in situations where the outliers are drawn from a distribution that has a different mean to the rest of the survey data (Chambers, 1986), which then leads to the suggestion that outlier robust prediction should include an additional term that makes a correction for this bias.In this paper, we explore the extension of this idea to the small area estimation situation and we propose two different analytical mean squared error (MSE) estimators for outlier robust predictors of small area means. We use simulation based on realistic outlier contaminated data to evaluate how the extended small area estimation approach compares with the plug-in robust methods described earlier. The empirical results show that the biascorrected predictive estimators are less biased than the projective estimators especially when there are outliers in the area effects. Moreover, in the simulation experiments we contrast the proposed MSE estimators with those generally utilized for the plug-in robust predictors. The proposed bias-robust and linearization-based MSE estimators appear to perform well when used with the robust predictors of small area means that are considered in this paper.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.