Neural networks whose architecture is determined by genetic algorithms outperform autoregressive integrated moving average forecasting models in six different time series examples. Refinements to the autoregressive integrated moving average model improve forecasting performance over standard ordinary least squares estimation by 8% to 13%. In contrast, neural networks achieve dramatic improvements of 10% to 40%. Additionally, neural networks give evidence of detecting patterns in data which remain hidden to the autoregression and moving average models. The consequent forecasting potential of neural networks makes them a very promising addition to the variety of techniques and methodologies used to anticipate future movements in time series.
JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.. The MIT Press is collaborating with JSTOR to digitize, preserve and extend access to The Review of Economics and Statistics. Abstract-It is well known that least squares estimates can be very sensitive to departures from normality. Various robust estimators such as least absolute deviations (LAD), Lp estimators or M-estimators provide possible alternatives to least squares when such departures occur. This paper applies a partially adaptive technique to estimate the parameters of Sharpe's market model. This methodology is based on a generalized t-distribution and includes as special cases least squares, LAD, Lp as well as some estimation procedures which have bounded and redescending influence functions.
Ever since the initial planning for the 1997 Utah legislative session, neural-network forecasting techniques have provided valuable insights for analysts forecasting tax revenues. These revenue estimates are critically important since agency budgets, support for education, and improvements to infrastructure all depend on their accuracy. Underforecasting generates windfalls that concern taxpayers, whereas overforecasting produces budget shortfalls that cause inadequately funded commitments. The pattern finding ability of neural networks gives insightful and alternative views of the seasonal and cyclical components commonly found in economic time series data. Two applications of neural networks to revenue forecasting clearly demonstrate how these models complement traditional time series techniques. In the first, preoccupation with a potential downturn in the economy distracts analysis based on traditional time series methods so that it overlooks an emerging new phenomenon in the data. In this case, neural networks identify the new pattern that then allows modification of the time series models and finally gives more accurate forecasts. In the second application, data structure found by traditional statistical tools allows analysts to provide neural networks with important information that the networks then use to create more accurate models. In summary, for the Utah revenue outlook, the insights that result from a portfolio of forecasts that includes neural networks exceeds the understanding generated from strictly statistical forecasting techniques. In this case, the synergy clearly results in the whole of the portfolio of forecasts being more accurate than the sum of the individual parts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.