After a long history of overexploitation, increasing efforts to restore marine ecosystems and rebuild fisheries are under way. Here, we analyze current trends from a fisheries and conservation perspective. In 5 of 10 well-studied ecosystems, the average exploitation rate has recently declined and is now at or below the rate predicted to achieve maximum sustainable yield for seven systems. Yet 63% of assessed fish stocks worldwide still require rebuilding, and even lower exploitation rates are needed to reverse the collapse of vulnerable species. Combined fisheries and conservation objectives can be achieved by merging diverse management actions, including catch restrictions, gear modification, and closed areas, depending on local context. Impacts of international fleets and the lack of alternatives to fishing complicate prospects for rebuilding fisheries in many poorer regions, highlighting the need for a global perspective on rebuilding marine resources.
A classic example of a sustainable fishery is that targeting sockeye salmon in Bristol Bay, Alaska, where record catches have occurred during the last 20 years. The stock complex is an amalgamation of several hundred discrete spawning populations. Structured within lake systems, individual populations display diverse life history characteristics and local adaptations to the variation in spawning and rearing habitats. This biocomplexity has enabled the aggregate of populations to sustain its productivity despite major changes in climatic conditions affecting the freshwater and marine environments during the last century. Different geographic and life history components that were minor producers during one climatic regime have dominated during others, emphasizing that the biocomplexity of fish stocks is critical for maintaining their resilience to environmental change.climate change ͉ resilience ͉ Pacific salmon ͉ endangered species ͉ biodiversity A t a time of growing concern about the sustainability of many of the world's fisheries, several stand out as providing long-term sustainable yield. Among the most prominent successes are the fisheries for sockeye salmon in Bristol Bay, Alaska (Fig. 1), that have seen record returns and catches in the last two decades. This success is due in part to several factors including (i) favorable ocean conditions in recent decades, (ii) a single, accountable management agency, and (iii) a well established program of limited entry to the fishery. However, the biocomplexity of the stock structure has also played an critical role in providing stability and sustainability. Here we provide evidence for the effects of biocomplexity on sustainability and emphasize that conserving biocomplexity within fish stocks is important for maintaining their resilience to future environmental change. The Biodiversity Of Bristol Bay SockeyeHoming of Pacific salmon (Oncorhynchus spp.) to their natal sites results in reproductive isolation of populations, allowing natural selection to operate on heritable phenotypic traits, and the result is a wealth of distinct, locally adapted populations (1, 2). Sockeye salmon (Oncorhynchus nerka), for example, display a wide variety of life history types, each associated predictably with certain breeding and rearing habitats (3). The diversity of phenotypes thus reflects the adaptation of populations to the diversity of suitable habitats. Spawning by salmonid fishes generally takes place in lotic habitats, and Bristol Bay sockeye salmon spawn in streams and rivers ranging from 10 cm to several meters deep, and in substrate ranging from small gravel to cobble (4, 5). Some creeks have spring-fed ponds with much finer substrate and deeper, slowly flowing water, and these too are used for spawning. Sockeye also spawn in groundwater-fed beaches at the outwash areas of rivers and along hillsides with substantial groundwater inputs. In these habitats, sockeye may spawn from the shoreline to depths of several meters. Finally, sockeye may also spawn on the rocky beaches o...
One billion people depend on seafood as their primary source of protein and 25% of the world's total animal protein comes from fisheries. Yet a third of fish stocks worldwide are overexploited or depleted. Using individual case studies, many have argued that community-based co-management should prevent the tragedy of the commons because cooperative management by fishers, managers and scientists often results in sustainable fisheries. However, general and multidisciplinary evaluations of co-management regimes and the conditions for social, economic and ecological success within such regimes are lacking. Here we examine 130 co-managed fisheries in a wide range of countries with different degrees of development, ecosystems, fishing sectors and type of resources. We identified strong leadership as the most important attribute contributing to success, followed by individual or community quotas, social cohesion and protected areas. Less important conditions included enforcement mechanisms, long-term management policies and life history of the resources. Fisheries were most successful when at least eight co-management attributes were present, showing a strong positive relationship between the number of these attributes and success, owing to redundancy in management regulations. Our results demonstrate the critical importance of prominent community leaders and robust social capital, combined with clear incentives through catch shares and conservation benefits derived from protected areas, for successfully managing aquatic resources and securing the livelihoods of communities depending on them. Our study offers hope that co-management, the only realistic solution for the majority of the world's fisheries, can solve many of the problems facing global fisheries.
Density‐dependent processes such as growth, survival, reproduction and movement are compensatory if their rates change in response to variation in population density (or numbers) such that they result in a slowed population growth rate at high densities and promote a numerical increase of the population at low densities. Compensatory density dependence is important to fisheries management because it operates to offset the losses of individuals. While the concept of compensation is straightforward, it remains one of the most controversial issues in population dynamics. The difficulties arise when going from general concepts to specific populations. Compensation is usually quantified using some combination of spawner–recruit analysis, long‐term field monitoring or manipulative studies, and computer modelling. Problems arise because there are limitations to each of these approaches, and these limitations generally originate from the high uncertainty associated with field measurements. We offer a hierarchical approach to predicting and understanding compensation that ranges from the very general, using basic life‐history theory, to the highly site‐specific, using detailed population models. We analyse a spawner–recruit database to test the predictions about compensation and compensatory reserve that derive from a three‐endpoint life‐history framework designed for fish. We then summarise field examples of density dependence in specific processes. Selected long‐term field monitoring studies, manipulative studies and computer modelling examples are then highlighted that illustrate how density‐dependent processes led to compensatory responses at the population level. Some theoretical and empirical advances that offer hope for progress in the future on the compensation issue are discussed. We advocate an approach to compensation that involves process‐level understanding of the underlying mechanisms, life‐history theory, careful analysis of field data, and matrix and individual‐based modelling. There will always be debate if the quantification of compensation does not include some degree of understanding of the underlying mechanisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.