With the growing commercial interest in blockchains, permissioned implementations have received increasing attention. Unfortunately, the BFT consensus algorithms that are the backbone of most of these blockchains scale poorly and offer limited throughput. Many state-of-the-art algorithms require a single leader process to receive and validate votes from a quorum of processes and then broadcast the result, which is inherently non-scalable. Recent approaches avoid this bottleneck by using dissemination/aggregation trees to propagate values and collect and validate votes. However, the use of trees increases the round latency, which ultimately limits the throughput for deeper trees. In this paper we propose Kauri, a BFT communication abstraction that can sustain high throughput as the system size grows, leveraging a novel pipelining technique to perform scalable dissemination and aggregation on trees. Our evaluation shows that Kauri outperforms the throughput of state-of-the-art permissioned blockchain protocols, such as HotStuff, by up to 28x. Interestingly, in many scenarios, the parallelization provided by Kauri can also decrease the latency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.