One of the major issues regarding long-term human space exploration is the need for a breathable atmosphere. A major component toward achieving this goal is both the removal of exhaled carbon dioxide (CO2) and the generation or recovery of oxygen (O2). NASA’s current technology only operates at about 50% efficiency due to the need to vent the methane that is produced during the CO2 reduction process. One method of improving the efficiency of this process is through plasma pyrolysis, wherein the methane is pyrolyzed to produce hydrogen and various dehydrogenated carbon byproducts. In this process, acetylene is one of the main components of this byproduct stream. Unfortunately, while the concentration of this effluent is generally high in hydrogen (>90% typically), the presence of the acetylene waste product can act as a poison for the ruthenium–alumina catalyst used in the CO2-reducing Sabatier process, requiring a removal step. Metal–organic frameworks (MOFs) represent a valuable method for removing these unsaturated hydrocarbons due to their high tunability, particularly through the incorporation of open metal sites. In this study, two common iron-based MOFs, MIL-100 and PCN-250, were studied for their ability to adsorb acetylene. A combination of gas adsorption analysis and density functional theory calculation results shows the ability of these materials to undergo a thermal-induced reduction event, which results in an improvement in gas adsorption performance. This improvement in gas performance appears to be at least partially due to the increased presence of π-backbonding toward the acetylene molecules.
As the world recovers from the lockdown imposed by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) pandemic, returning to shared indoor spaces is considered a formidable risk. It is now clear that transmission of SARS-CoV-2 is driven by respiratory microdroplets expelled by infected persons, which can become suspended in the air. Several layering technologies are being explored to mitigate indoor transmission in the hopes of re-opening business, schools and transportation systems. Here we coupled the water adsorptive and photocatalytic capacity of novel Metal Organic Frameworks (MOFs) to demonstrate the capture and inactivation of SARS-CoV-2. Discussion is given on the methods of analysis and the differences between the photocatalytic activity of several MOFs, and the difference between MOF induced photocatalysis and ultra violet photolysis of SARS-CoV-2. Our results are intended to provide support to industry looking for alternative methods secure indoor spaces.
One of the major issues regarding long-term human space exploration is the need for a breathable atmosphere. A major component towards achieving this goal is both the removal of exhaled carbon dioxide (CO2) and the generation or recovery of oxygen (O2). NASA’s current technology only operates at about 50% efficiency due to the need to vent the methane that is produced during the CO2 reduction process. One method of improving the efficiency of this process is through plasma pyrolysis, wherein the methane is pyrolyzed to produce hydrogen and various dehydrogenated carbon byproducts. In this process, acetylene is one of the main components of this byproduct stream. Unfortunately, while the concentration of this effluent is generally high in hydrogen (>90% typically) the presence of the acetylene waste product can act as a poison for the ruthenium-alumina catalyst used in the CO2 reducing Sabatier process, requiring a removal step. Metal-organic frameworks (MOFs) represent a valuable method for removing these unsaturated hydrocarbons due to their high tunability, particularly through the incorporation of open metal sites. In this study, two common iron-based MOFs, MIL-100 and PCN-250, were studied for their ability to adsorb acetylene. A combination of gas adsorption analysis and density functional theory calculation results show the ability of these materials to undergo a thermal induced reduction event which results in an improvement in gas adsorption performance. This improvement in gas performance appears to be at least partially due to the increased presence of π-backbonding towards the acetylene molecules.
One of the major issues regarding long-term human space exploration is the need for a breathable atmosphere. Typically, this requires both removal of exhaled CO2 and generation or recovery of oxygen. NASA’s current technology only operates at about 50% efficiency due to the need to vent methane that is produced during the CO2 reduction process. One method of improving the efficiency of this process is through plasma pyrolysis, wherein the methane is pyrolyzed to produce hydrogen and various dehydrogenated carbon byproducts, with acetylene being one of the main components of this byproduct stream. Unfortunately, while the concentration of this effluent is generally high in hydrogen (>90% typically) the presence of this acetylene can act as a poison for the Sabatier catalysts, requiring a removal step. Metal-organic frameworks (MOFs) represent a valuable method removing these unsaturated hydrocarbons due to their high tunability, particularly through the incorporation of open metal sites. In this study, two common iron-based MOFs, MIL-100 and PCN-250, were studied for their ability to adsorb acetylene. A combination of gas adsorption and density functional theory results show the ability of these materials to undergo a thermal induced reduction event results in an improvement in gas adsorption performance, which appears to be at least partially due to the increased presence of π-backbonding towards the acetylene molecules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.