To counter the technical difficulties faced by gob-side entry retaining (GER) under multiple complex mining geological conditions in China, this paper introduces a GER method with fully mechanized gangue backfilling mining. A similar materials simulation experiment was conducted to simulate the gob-backfilled GER process by using the similar model test system containing an independently developed horizontal pushing load device. The experimental results show that the compaction speed of the backfilling area (BFA) can be improved, and the main roof subsidence can be reduced by increasing the horizontal pushing load and reducing the attenuation rate of the stress in BFA. The designed roadside backfill body (RBB) containing a flexible cushion is adaptive to the given deformation of the main roof, thus reducing the stress concentration of the RBB. The field test results show that when a 2 MPa horizontal pushing load is exerted in the BFA, arranging a 200 mm high-water-material flexible cushion can cause the BFA to swiftly change to the compaction stage. After stabilized deformation, the roadway section satisfies the design and application requirements. The feasibility and rationality of the GER with the fully mechanized gangue backfilling mining are proved, providing a safe, efficient, and environmentally friendly mining method without using a coal pillar.
Development of a safe and economical roadside support body (RSB) material is the key to successful backfilling gob-side entry retaining (GER). By means of laboratory tests, this paper studied the effects of the water-cement ratio, aggregate content, and age on the contractibility and resistance increasing speed, compressive strength, and postpeak carrying capacity of the concrete with gangues as an aggregate. It also discussed the rationality and adaptability of gangue concrete as a RSB material for backfilling GER. e experimental results show that the compressive strength of gangue concrete increases with age, and that the strength of gangue concrete demonstrates a nonlinear decreasing trend with the increase of the cementing material's water-cement ratio. e watercement ratio in the range of 0.46-0.60 has the most significant regulation effect on the strength of gangue concrete. Mixing with a certain amount of coal gangue enhances the postpeak carrying capacity of concrete, preventing the sample from impact failure. e field experimental results report that as a RSB material, gangue concrete can meet the design and application requirements of GER with gangue backfilling mining. A RSB material featuring high safety, high waste utilization rate, fast construction speed, and low costs is provided.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.