Neurons are exquisitely specialized for rapid electrical transmission of signals, but some properties of glial cells, which do not communicate with electrical impulses, are well suited for participating in complex cognitive functions requiring broad spatial integration and long-term temporal regulation. Astrocytes, microglia, and oligodendrocytes all have biological properties that could influence learning and cognition. Myelination by oligodendrocytes increases conduction velocity, affecting spike timing and oscillations in neuronal activity. Astrocytes can modulate synaptic transmission and may couple multiple neurons and synapses into functional assemblies. Microglia can remove synapses in an activity-dependent manner altering neural networks. Incorporating glia into a bicellular mechanism of nervous system function may help answer long-standing questions concerning the cellular mechanisms of learning and cognition.
Instructional design can be characterized as a complex problem‐solving task, yet little is known about what cognitive processes it requires. This research sought to identify differences in the thinking of expert and novice instructional designers given the same design task. A talk‐aloud procedure was used to capture their problem‐solving procedures and representations while designing instruction for a computer simulation. A coding scheme based on design principles, strategies, and subtasks was applied to the verbal protocols. Quantitative and qualitative analyses indicated that expert and novice instructional designers do appear to use divergent design paths. These design paths were further analyzed using design trees.
The U.S. military medical community spends a great deal of time and resources training its personnel to provide them with the knowledge and skills necessary to perform life-saving tasks, both on the battlefield and at home. However, personnel may fail to retain specialized knowledge and skills if they are not applied during the typical periods of nonuse within the military deployment cycle, and retention of critical knowledge and skills is crucial to the successful care of warfighters. For example, we researched the skill and knowledge loss associated with specialized surgical skills such as those required to perform laparoscopic surgery (LS) procedures. These skills are subject to decay when military surgeons perform combat casualty care during their deployment instead of LS. This article describes our preliminary research identifying critical LS skills, as well as their acquisition and decay rates. It introduces models that identify critical skills related to laparoscopy, and proposes objective metrics for measuring these critical skills. This research will provide insight into best practices for (1) training skills that are durable and resistant to skill decay, (2) assessing these skills over time, and (3) introducing effective refresher training at appropriate intervals to maintain skill proficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.