Analyzing the entire liquefaction cycle, using a large temperature span with many degrees of freedom, may not always result in a practical solution. The objective of this paper is to investigate the feasibility of using an environmentally friendly refrigerant compound, ammonia, in the mixed refrigerant (MR) for the liquefied natural gas (LNG) pre-cooling cycle through thermodynamic performance, economic analyses and environmental impact. Fifteen cases studies within three major mixed refrigerants groups of MR-1, MR-2 and MR-3 were developed by adding ammonia to various molar compositions of lighter and heavier hydrocarbons. The thermodynamic analysis shows increasing ammonia’s concentrations in the mixed refrigerant by 10% had the largest enhancement on coefficient of performance (COP) of MR-1 by 0.67 and decreased the specific energy consumption of the pre-cooling cycle by 128 kJ/kg compared to the base case. Economic analyses revealed that the mixed refrigerant MR-1, with ammonia, methane, ethane and propane, benefited the most from higher concentration of ammonia in the mixed refrigerant, which resulted in both lower annual capital and operational costs by $2.52 MM and $3.67 MM, respectively. Lastly, reducing the methane concentration in MR and replacing it with ammonia, decreased the amount of refrigerant leakage through compressor’s seals and reduced the global warming potential index (GWPI) of mixed refrigerant up to 24.3%.
The selection of proper refrigerants for natural gas liquefaction processes play a key role in cycle?s efficiency. Mixed refrigerants have been proven to improve cycle?s exergy efficiency over single pure refrigerant. However, the future of some of these refrigerants with higher global warming potential index (GWPI) are unknown due to the continuous restriction being enforced by the energy and environmental agencies over the past few decades. This study examines the benefits and drawbacks of mixing ammonia, a refrigerant with zero GWPI and a high occupational safety characteristic, with lighter hydrocarbon refrigerants such as methane and ethane as a mixed refrigerant in a natural gas liquefaction?s precooling cycle. Results showed, presence of ammonia in mixed refrigerant not only saved in capital cost due to the smaller footprint of plant and smaller cold box, it also lowers the plants precooling operation expense by reducing the required compression power needed for the precooling cycle up to 16.2%. The results of exergy analyses showed that by reducing the molar concentration of more pollutant refrigerant methane and replacing it with ammonia enhanced the cycle?s efficiency by 4.3% and lowered the heat exchanger total exergy loss up to 47.9 [kW.kgLNG-1].
Mixed refrigerant (MR) system is commonly used for a liquefaction process of liquid natural gas (LNG) plants due to its higher efficiency of heat transfer rate compared to pure refrigerants. The performance of MR system is highly dependent on the variable refrigerant composition, which is challenging to obtain in a practical LNG plant setting. To address this challenge, this study investigates a unique approach to improve the exergy efficiency of liquefaction cycle employing ammonia in the mixture while keeping the MR molar composition constant in dual mixed refrigerant (DMR) cycle. A control strategy is proposed to regulate the MR flowrate through flow control sensors and a series of Joule-Thomason (JT) valves to sustain the desired efficiency of the cycle under various plant’s operation conditions. The robustness and adaptability of two proposed MR compositions were examined under eight cases by varying natural gas (NG) feed pressure and methane concentration. Composite curve plots were utilized as a tool to control the minimum temperature approach (MTA) and to improve exergy efficiency of the cycle. Furthermore, findings revealed that mixtures which included ammonia yielded a reduction in the number of compressors, as well as a reduced the overall amount of compressors rate of shaft work required for the liquefaction cycle. The results emphasize that DMR is most efficient when NG methane concentration is at 75%. Furthermore, the compressor rate of shaft work reduced by 13.3%, while exergy efficiency of the cycle increased by 14.3%, when natural gas methane concentration reduced from 90% to 75%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.