JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.. University of California Press and CooperOrnithological Society are collaborating with JSTOR to digitize, preserve and extend access to The Condor.Abstract. Studies using measurements of61'5N to delineate diet or trophic level in natural ecosystems are based on the premise that 6'5N values in consumer tissues can be reliably correlated with those in the diet. However, juvenile Japanese Quail (Coturnixjaponica) fed a rationed diet designed to maintain, but not increase, body mass showed significantly enriched tissue 6'5N values over a control group fed the same diet ad libitum. We tested the hypothesis that fasting or nutritional stress can also cause elevated 6'5N values in tissues of wild birds by examining tissues of Arctic-nesting female Ross' Geese (Chen rossii) before and after their period of fasting during egg laying and incubation. Significant declines in body, pectoral muscle, liver and abdominal fat mass occurred from arrival through incubation. Post-incubating geese showed significantly higher pectoral muscle and liver 6'5N values compared to geese taken before clutch initiation but 6a3C values in these tissues were unchanged. We hypothesize a mechanism of tissue 6'5N enrichment due to reduced nutrient intake and discuss the implications of these results to ecosystem studies using stable-nitrogen isotope analysis.
We assessed the effectiveness of an extensive and unprecedented wildlife reduction effort directed at a wide‐ranging migratory population of geese. Population reduction efforts that targeted several populations of light geese (greater snow geese [Chen caerulescens atlantica], lesser snow geese [C. c. caerulescens], and Ross's geese [C. rossii]) began in 1999 in central and eastern North America. Such efforts were motivated by a broad consensus that abundance of these geese was causing serious ecological damage to terrestrial and salt marsh ecosystems in central and eastern parts of the Canadian Arctic and subarctic regions along Hudson Bay. Starting in February 1999, special conservation measures (or, in the U.S., a conservation order) were added to the respective federal regulations that permitted hunters to take snow geese (in parts of Canada and the U.S.) and Ross's geese (in parts of the U.S.) during specified harvest periods outside of the hunting season. These measures were accompanied by increase or removal of daily kill and possession limits and by permissions to use previously prohibited equipment for hunting these species in certain regions of the continent. The intent was to reduce adult survival through increased hunting mortality, which was judged to be the most cost‐effective approach to reversing population growth. Our principal goal was to assess the effectiveness of reduction efforts directed at the midcontinent population of lesser snow geese, which was thought to be the most serious threat to arctic and subarctic ecosystems of the 3 light goose populations. Our multiple objectives included the estimation and detection of change in the response measures of total annual harvest, harvest rate, survival rate, and abundance, using the 1998 hunting period (defined as 1 Aug 1998 to 31 Jul 1999) as a point of reference. We used information about hunter recoveries of leg‐banded snow geese and estimates of regular‐season harvest to estimate 1) conservation‐order harvest and total annual harvest, 2) geographic and temporal distribution of recoveries by age class, 3) survival and recovery probability, and 4) abundance of snow geese each August using Lincoln's (1930) method. We also modeled population growth to infer the form of population response to management efforts. Toward that end, we also proposed a method of estimating conservation‐order harvest and tested for differences in band‐reporting rate between Canada and the United States. Overall, the balance of evidence favored the conclusion that the midcontinent population has continued to grow during the conservation order, although perhaps at a reduced rate. We suggest that annual rate of population growth $({\hat {\lambda }})$, derived from estimates of annual population size in August, likely provides the most reliable inference about change in the midcontinent population. There was a decline in annual survival probability between these 2 periods from about 0.89 to about 0.83 among snow geese from the southern‐nesting stratum (south of 60°N...
The Mid-Continent Population of the lesser snow goose, which breeds in the eastern and central Canadian Arctic and sub-Arctic, and winters in the southern United States and northern Mexico has increased 5-7% annually from the late 1960s to the mid-1990s, largely because of increased survival in response to an agricultural food subsidy. The rise in numbers complements the increased use of nitrogen fertilizers and a corresponding rise in yields of rice, corn, and wheat along the flyways and on the wintering grounds. In sub-Arctic migration areas and at Arctic breeding colonies, foraging by high numbers of birds has led to loss of coastal vegetation, adverse changes in soil properties and the establishment of an alternative stable state of exposed sediment, which can be detected with LANDSAT imagery. At a local scale, gosling growth, size and survival decreased in affected areas and other taxa have been adversely affected. The food subsidy on wintering and migration areas appears insufficient to meet reproductive demands as foraging in spring continues to occur on southern Hudson Bay staging and nesting areas. The recent introduction of liberal hunting regulations may reduce population size in the near term, but the revegetation of these coastal ecosystems will take decades to achieve. The present pattern of vegetation loss in these Arctic coastal systems is likely to continue in the forseeable future.
A full understanding of population dynamics depends not only on estimation of mechanistic contributions of recruitment and survival, but also knowledge about the ecological processes that drive each of these vital rates. The process of recruitment in particular may be protracted over several years, and can depend on numerous ecological complexities until sexually mature adulthood is attained. We addressed long-term declines (23 breeding seasons, 1992-2014) in the per capita production of young by both Ross's Geese (Chen rossii) and Lesser Snow Geese (Chen caerulescens caerulescens) nesting at Karrak Lake in Canada's central Arctic. During this period, there was a contemporaneous increase from 0.4 to 1.1 million adults nesting at this colony. We evaluated whether (1) density-dependent nutritional deficiencies of pre-breeding females or (2) phenological mismatch between peak gosling hatch and peak forage quality, inferred from NDVI on the brood-rearing areas, may have been behind decadal declines in the per capita production of goslings. We found that, in years when pre-breeding females arrived to the nesting grounds with diminished nutrient reserves, the proportional composition of young during brood-rearing was reduced for both species. Furthermore, increased mismatch between peak gosling hatch and peak forage quality contributed additively to further declines in gosling production, in addition to declines caused by delayed nesting with associated subsequent negative effects on clutch size and nest success. The degree of mismatch increased over the course of our study because of advanced vegetation phenology without a corresponding advance in Goose nesting phenology. Vegetation phenology was significantly earlier in years with warm surface air temperatures measured in spring (i.e., 25 May-30 June). We suggest that both increased phenological mismatch and reduced nutritional condition of arriving females were behind declines in population-level recruitment, leading to the recent attenuation in population growth of Snow Geese.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.