SummaryAdvances in the understanding of the molecular basis for acute myeloid leukemia (AML) have generated new potential targets for treatment. Fms-like tyrosine kinase 3 (FLT3) is one of the most frequently mutated genes in AML and mutations in this gene are associated with poor overall survival. AXL plays a role in the activation of FLT3 and has been implicated in the pathogenesis of AML. The studies reported here evaluated the ability of a novel FLT3/AXL inhibitor, gilteritinib, to block mutated FLT3 in cellular and animal models of AML. Initial kinase studies showed that gilteritinib, a type I tyrosine kinase inhibitor, was highly selective for both FLT3 and AXL while having weak activity against c-KIT. Gilteritinib demonstrated potent inhibitory activity against the internal tandem duplication (FLT3-ITD) and FLT3-D835Y point mutations in cellular assays using MV4–11 and MOLM-13 cells as well as Ba/F3 cells expressing mutated FLT3. Gilteritinib also inhibited FLT3-F691 mutations, although to a lesser degree, in these assays. Furthermore, gilteritinib decreased the phosphorylation levels of FLT3 and its downstream targets in both cellular and animal models. In vivo, gilteritinib was distributed at high levels in xenografted tumors after oral administration. The decreased FLT3 activity and high intratumor distribution of gilteritinib translated to tumor regression and improved survival in xenograft and intra-bone marrow transplantation models of FLT3-driven AML. No overt toxicity was seen in mouse models treated with gilteritinib. These results indicate that gilteritinib may be an important next-generation FLT3 inhibitor for use in the treatment of FLT3 mutation-positive AML.Electronic supplementary materialThe online version of this article (doi:10.1007/s10637-017-0470-z) contains supplementary material, which is available to authorized users.
Objectives: To investigate the current clinical applications and diagnostic performance of artificial intelligence (AI) in dental and maxillofacial radiology (DMFR). Methods: Studies using applications related to DMFR to develop or implement AI models were sought by searching five electronic databases and four selected core journals in the field of DMFR. The customized assessment criteria based on QUADAS-2 were adapted for quality analysis of the studies included. Results: The initial electronic search yielded 1862 titles, and 50 studies were eventually included. Most studies focused on AI applications for an automated localization of cephalometric landmarks, diagnosis of osteoporosis, classification/segmentation of maxillofacial cysts and/or tumors, and identification of periodontitis/periapical disease. The performance of AI models varies among different algorithms. Conclusion: The AI models proposed in the studies included exhibited wide clinical applications in DMFR. Nevertheless, it is still necessary to further verify the reliability and applicability of the AI models prior to transferring these models into clinical practice.
Purpose: h-catenin is the downstream effector of the Wnt signaling pathway, and it regulates cell proliferation. h-catenin overexpression correlates positively with prognosis in several types of malignancies. We herein assessed its effects on growth of multiple myeloma cells using a xenograft model. Experimental Design: We first investigated the expression of h-catenin in multiple myeloma cell lines and multiple myeloma cells obtained from patients. Next, we investigated the growth inhibitory effects of h-catenin small interfering RNA on the growth of multiple myeloma cells in vivo. Six-week-old male BALB/c nu/nu mice were inoculated s.c. in the right flank with 5 Â 10 6 RPMI8226 cells, followed by s.c. injections of h-catenin small interfering RNA, scramble small interfering RNA, or PBS/atelocollagen complex twice a week for a total of eight injections. Results: Significantly higher levels of h-catenin expression were observed in multiple myeloma cell lines and in samples from patients with multiple myeloma than those found in mononuclear cells obtained from healthy volunteers. In in vivo experiments, no inhibitory effects were observed following treatment with scramble small interfering RNA or PBS/atelocollagen complexes, whereas treatment with h-catenin small interfering RNA/atelocollagen complex significantly inhibited growth of multiple myeloma tumors (P < 0.05).Conclusions: h-catenin small interfering RNA treatment inhibited the growth of multiple myeloma tumors in a xenograft model. To our knowledge, this is the first report showing that the treatment with h-catenin small interfering RNA produces an inhibitory effects on growth of hematologic malignancies in vivo. Because treatment with h-catenin small interfering RNA inhibited growth of multiple myeloma cells, h-catenin is the attractive novel target for treating multiple myeloma.
Since a variety of cell intrinsic and extrinsic molecular abnormalities cooperatively promote tumor formation in multiple myeloma (MM), therapeutic approaches that concomitantly target more than one molecule are increasingly attractive. We herein demonstrate the anti-myeloma effect of a cephalotaxus alkaloid, homoharringtonine (HHT), an inhibitor of protein synthesis, through the induction of apoptosis. HHT significantly reduced Mcl-1, a crucial protein involved in myeloma cell survival, in all three myeloma cell lines examined, whereas certain BH3-only proteins, such as Bim, Bik, and Puma, remained unchanged following HHT treatment, and their expression levels depended on the cell type. HHT also reduced the levels of c-FLIP(L/S), activated caspase-8, and induced active truncated-Bid. Thus, HHT-induced apoptosis appears to be mediated via both intrinsic and extrinsic apoptosis pathways, and the resultant imbalance between BH3-only proteins and Mcl-1 may be pivotal for apoptosis by HHT. In addition, HHT treatment resulted in reduced levels of beta-catenin and XIAP proteins, which also contribute to disease progression and resistance to chemotherapy in MM. In combination, HHT enhanced the effects of melphalan, bortezomib, and ABT-737. These results suggest that HHT could constitute an attractive option for MM treatment though its ability to simultaneously target multiple tumor-promoting molecules.
Susceptibility of the submental artery in type II, III, and IV to injury during implant surgery is suggested.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.