Social sustainability is a major concern in global supply chains for protecting workers from exploitation and for providing a safe working environment. Although there are stipulated standards to govern supply chain social sustainability, it is not uncommon to hear of businesses being reported for noncompliance issues. Even reputable firms such as Unilever have been criticized for production labor exploitation. Consumers now increasingly expect sellers to disclose information on social sustainability, but sellers are confronted with the challenge of traceability in their multi-tier global supply chains. Blockchain offers a promising future to achieve instant traceability in supply chain social sustainability. This study develops a system architecture that integrates the use of blockchain, internet-of-things (IoT) and big data analytics to allow sellers to monitor their supply chain social sustainability efficiently and effectively.System implementation cost and potential challenges are analyzed before the research is concluded.
As a major challenge and opportunity for traditional manufacturing, intelligent manufacturing is facing the needs of sustainable development in future. Sustainability assessment undoubtedly plays a pivotal role for future development of intelligent manufacturing. Aiming at this, the paper presents the digital twin driven information architecture of sustainability assessment oriented for dynamic evolution under the whole life cycle based on the classic digital twin mapping system. The sustainability assessment method segment of the architecture includes indicator system building, indicator value determination, indicator importance degree determination and intelligent manufacturing project assessing. A novel approach for treating the ambiguity of expert' judgment in indicator value determination by introducing trapezoidal fuzzy number into analytic hierarchy process is proposed, while the complexity of the influence relationship among the indicators is processed by the integration of complex networks modeling and PROMETHEE II for the indicator importance degree determination. A two-stage evidence combination model based on evidence theory is built for intelligent manufacturing project assessing lastly. The presented digital-twin-driven information architecture and the sustainability assessment method is tested and validated on a study of sustainability assessment of 8 intelligent manufacturing projects of an air conditioning enterprise. The results of the presented method were validated by comparing them with the results of the fuzzy and rough extension of the PROMETHEE II, TOPSIS and VIKOR methods, indicator importance degree determining method by entropy and indicator value determining method by accurate expert scoring.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.