Recent evidence from both oceanic observations and global-scale ocean model simulations indicate the existence of regions where low-mode internal tidal energy dominates over that of the geostrophic balanced flow. Inspired by these findings, we examine the effect of the first vertical mode inertia–gravity waves on the dynamics of balanced flow using an idealized model obtained by truncating the hydrostatic Boussinesq equations on to the barotropic and the first baroclinic mode. On investigating the wave–balance turbulence phenomenology using freely evolving numerical simulations, we find that the waves continuously transfer energy to the balanced flow in regimes where the balanced-to-wave energy ratio is small, thereby generating small-scale features in the balanced fields. We examine the detailed energy transfer pathways in wave-dominated flows and thereby develop a generalized small Rossby number geophysical turbulence phenomenology, with the two-mode (barotropic and one baroclinic mode) quasi-geostrophic turbulence phenomenology being a subset of it. The present work therefore shows that inertia–gravity waves would form an integral part of the geophysical turbulence phenomenology in regions where balanced flow is weaker than gravity waves.
Previous formulations for the zonally averaged momentum budget and Eliassen-Palm (EP) flux diagnostics do not adequately account for moist dynamics, since air parcels are not differentiated by their moisture content when averages are taken. The difficulty in formulating the momentum budget in moist coordinates lies in the fact that they are generally not invertible with height. Here, a conditional-averaging approach is used to derive a weak formulation of the momentum budget and EP flux in terms of a general vertical coordinate that is not assumed to be invertible. The generalized equation reduces to the typical massweighted zonal-mean momentum equation for invertible vertical coordinates.The weak formulation is applied here to study the momentum budget on moist isentropes. Recent studies have shown that the meridional mass transport in the midlatitudes is twice as strong on moist isentropes as on dry isentropes. It is shown here that this implies a similar increase in the EP flux between the dry and moist frameworks. Physically, the increase in momentum exchange is tied to an enhancement of the form drag associated with the horizontal structure of midlatitude eddies, where the poleward flow of moist air is located in regions of strong eastward pressure gradient.
Month-to-month variability in the meridional atmospheric energy transport is analyzed in the Modern-Era Retrospective Analysis for Research and Applications (MERRA) reanalysis for 1979-2012. The meridional transport of moist static energy (MSE) is composited onto the high and low phases of the northern and southern annular modes (NAM and SAM). While the high phase of the NAM and SAM is known to involve a poleward shift in the midlatitude storm track and jet, it is shown here that the distribution of poleward MSE transport shifts equatorward. This change is explained by examining the variability of the underlying meridional circulation. In particular, changes in the mass transport averaged on dry and moist static energy levels are considered. These circulations have an advantage over the conventional Eulerian circulation for explaining the total energy transport. They are computed using the statistical transformed Eulerian-mean (STEM) formulation, which provides a decomposition of the circulation into Eulerian-mean and eddy-driven components. The equatorward shift in the MSE transport is largely explained by a poleward shift of the Ferrel cell, while changes in the eddydriven circulation have a comparatively small effect on the energy transport. The changes in the residual circulation and jet are shown to be consistent through momentum balance arguments. Mean-eddy feedback mechanisms that drive and sustain the annular modes are discussed at the end as a possible explanation for why the changes in the eddy-driven circulation are weak compared to the changes in the Eulerian circulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.