Proteins of the cyclin M family (CNNMs; also called ancient conserved domain proteins, or ACDPs) are represented by four integral membrane proteins that have been proposed to function as Mg 2؉ transporters. CNNMs are associated with a number of genetic diseases affecting ion movement and cancer via their association with highly oncogenic phosphatases of regenerating liver (PRLs). Structurally, CNNMs contain an N-terminal extracellular domain, a transmembrane domain (DUF21), and a large cytosolic region containing a cystathionine-synthase (CBS) domain and a putative cyclic nucleotidebinding homology (CNBH) domain. Although the CBS domain has been extensively characterized, little is known about the CNBH domain. Here, we determined the first crystal structures of the CNBH domains of CNNM2 and CNNM3 at 2.6 and 1.9 Å resolutions. Contrary to expectation, these domains did not bind cyclic nucleotides, but mediated dimerization both in crystals and in solution. Analytical ultracentrifugation experiments revealed an inverse correlation between the propensity of the CNBH domains to dimerize and the ability of CNNMs to mediate Mg 2؉ efflux. CNBH domains from active family members were observed as both dimers and monomers, whereas the inactive member, CNNM3, was observed only as a dimer. Mutational analysis revealed that the CNBH domain was required for Mg 2؉ efflux activity of CNNM4. This work provides a structural basis for understanding the function of CNNM proteins in Mg 2؉ transport and associated diseases.
Highlights d Structural and functional studies of CNNM, a putative Mg 2+ transporter in human d Crystal structures of cytosolic fragments in open and closed conformations d Tight correlation between Mg 2+ -ATP binding and CBS-pair domain dimerization d Mg 2+ efflux is regulated by conformational changes associated with Mg 2+ -ATP binding
CNNM/CorB proteins are a broadly conserved family of integral membrane proteins with close to 90,000 protein sequences known. They are associated with Mg2+ transport but it is not known if they mediate transport themselves or regulate other transporters. Here, we determine the crystal structure of an archaeal CorB protein in two conformations (apo and Mg2+-ATP bound). The transmembrane DUF21 domain exists in an inward-facing conformation with a Mg2+ ion coordinated by a conserved π-helix. In the absence of Mg2+-ATP, the CBS-pair domain adopts an elongated dimeric configuration with previously unobserved domain-domain contacts. Hydrogen-deuterium exchange mass spectrometry, analytical ultracentrifugation, and molecular dynamics experiments support a role of the structural rearrangements in mediating Mg2+-ATP sensing. Lastly, we use an in vitro, liposome-based assay to demonstrate direct Mg2+ transport by CorB proteins. These structural and functional insights provide a framework for understanding function of CNNMs in Mg2+ transport and associated diseases.
PINK1 and parkin constitute a mitochondrial quality control system mutated in Parkinson's disease. PINK1, a kinase, phosphorylates ubiquitin to recruit parkin, an E3 ubiquitin ligase, to mitochondria. PINK1 controls both parkin localization and activity through phosphorylation of both ubiquitin and the ubiquitin-like (Ubl) domain of parkin. Here, we observed that phospho-ubiquitin can bind to two distinct sites on parkin, a high-affinity site on RING1 that controls parkin localization and a low-affinity site on RING0 that releases parkin autoinhibition. Surprisingly, ubiquitin vinyl sulfone assays, ITC, and NMR titrations showed that the RING0 site has higher affinity for phospho-ubiquitin than phosphorylated Ubl in trans. We observed parkin activation by micromolar concentrations of tetra-phospho-ubiquitin chains that mimic mitochondria bearing multiple phosphorylated ubiquitins. A chimeric form of parkin with the Ubl domain replaced by ubiquitin was readily activated by PINK1 phosphorylation. In all cases, mutation of the binding site on RING0 abolished parkin activation. The feedforward mechanism of parkin activation confers robustness and rapidity to the PINK1-parkin pathway and likely represents an intermediate step in its evolutionary development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.