This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Filamentous fungi Trichoderma have been able to efficiently degrade fluoroquinolone antibiotics namely ciprofloxacin (CIP) and ofloxacin (OFL) as well as the fungicide climbazole (CLB) that are persistent in conventional activated sludge processes. All targeted compounds were biotransformed by whole cells of Trichoderma spp., exactly T. harzanium and T. asperellum, and biosorption played a limited role in their elimination. However, contrasting results were obtained with the two strains.T. asperellum was more efficient against CIP, with a 81% degradation rate in 13 days of incubation, while T. harzianum was more efficient against CLB, with a 91% degradation rate. While in the case of OFL, both strains showed same efficiency with degradation rate around 40%. Adding a cytochrome P450 enzyme inhibitor hardly resulted in the modification of degradation kinetics supporting the implication of extracellular enzymes in chemical biotransformation. Transformation products were identified by liquid chromatography-high resolution-mass spectrometry and transformation pathways were proposed.Biotransformation of selected compounds included hydroxylation, oxidation/reduction and N-and O-dealkylation reactions, similarly to those reported with white rot fungi. CIP underwent transformations at the piperazinyl ring through oxidation and conjugation reactions, while OFL mainly underwent hydroxylation processes and CLB carbonyl reduction into alcohol.Consequently, Trichoderma spp. likely possess a machinery of unspecific enzymes, which makes their application in removal of pharmaceutical and personal care products attractive.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.