Hypoxia in solid tumors facilitates the progression of the disease, develops resistance to chemo and radiotherapy, and contributes to relapse. Due to the lack of tumor penetration, most of the reported drug carriers are unable to reach the hypoxic niches of the solid tumors. We have developed tissue-penetrating, hypoxia-responsive echogenic polymersomes to deliver anticancer drugs to solid tumors. The polymersomes are composed of a hypoxia-responsive azobenzene conjugated and a tissue penetrating peptide functionalized polylactic acid-polyethylene glycol polymer. The drug-encapsulated, hypoxia-responsive polymersomes substantially decreased the viability of pancreatic cancer cells in spheroidal cultures. Under normoxic conditions, polymersomes were echogenic at diagnostic ultrasound frequencies but lose the echogenicity under hypoxia. In-vivo imaging studies with xenograft mouse model further confirmed the ability of the polymersomes to target, penetrate, and deliver the encapsulated contents in hypoxic pancreatic tumor tissues.
Liposomes are representative lipid nanoparticles widely used for delivering anticancer drugs, DNA fragments, or siRNA to cancer cells. Upon targeting, various internal and external triggers have been used to increase the rate for contents release from the liposomes. Among the internal triggers, decreased pH within the cellular lysosomes has been successfully used to enhance the rate for releasing contents. However, imparting pH sensitivity to liposomes requires the synthesis of specialized lipids with structures that are substantially modified at a reduced pH. Herein, we report an alternative strategy to render liposomes pH sensitive by encapsulating a precursor which generates gas bubbles in situ in response to acidic pH. The disturbance created by the escaping gas bubbles leads to the rapid release of the encapsulated contents from the liposomes. Atomic force microscopic studies indicate that the liposomal structure is destroyed at a reduced pH. The gas bubbles also render the liposomes echogenic, allowing ultrasound imaging. To demonstrate the applicability of this strategy, we have successfully targeted doxorubicin-encapsulated liposomes to the pancreatic ductal carcinoma cells that overexpress the folate receptor on the surface. In response to the decreased pH in the lysosomes, the encapsulated anticancer drug is efficiently released. Contents released from these liposomes are further enhanced by the application of continuous wave ultrasound (1 MHz), resulting in substantially reduced viability for the pancreatic cancer cells (14%).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.