Perfluorooctanoic acid (PFOA) is a commercially important organic fluorochemical and is considered to have a long half-life in human blood. In this paper, PFOA binding to rat and human plasma proteins was investigated. On the basis of results from size-exclusion chromatography and ligand blotting, most PFOA was in protein-bound form in male and female rat plasma, and the primary PFOA binding protein in plasma was serum albumin. PFOA binding to rat serum albumin (RSA) in the gas phase was observed by electrospray ionization MS. (19)F NMR experiments revealed that binding to RSA caused peak broadening and chemical shift changes of PFOA resonances, and on the basis of this observation, the dissociation constant was determined to be approximately 0.3 mM. The dissociation constants for PFOA binding to RSA and human serum albumin (HSA) and the numbers of PFOA binding sites on RSA and HSA were also determined by a separation method using microdesalting columns. No significant difference was found between PFOA binding to RSA and PFOA binding to HSA. The dissociation constants for binding of PFOA to RSA or HSA and the numbers of PFOA binding sites were in the range of 0.3-0.4 mM and 6-9, respectively. On the basis of these binding parameters and the estimated plasma concentration of serum albumin, greater than 90% of PFOA would be bound to serum albumin in both rat and human blood.
The absorption, distribution, metabolism, and elimination of [3-14C] 8-2 fluorotelomer alcohol (8-2 FTOH, C7F1514CF2CH2CH2OH) following a single oral dose at 5 and 125 mg/kg in male and female rats have been determined. Following oral dosing, the maximum concentration of 8-2 FTOH in plasma occurred by 1 h postdose and cleared rapidly with a half-life of less than 5 h. The internal dose to 8-2 FTOH, as measured by area under the concentration-time curve to infinity, was similar for male and female rats and was observed to increase in a dose-dependent fashion. The majority of the 14C 8-2 FTOH (> 70%) was excreted in feces, and 37-55% was identified as parent. Less than 4% of the administered dose was excreted in urine, which contained low concentrations of perfluorooctanoate (approximately 1% of total 14C). Metabolites identified in bile were principally composed of glucuronide and glutathione conjugates, and perfluorohexanoate was identified in excreta and plasma, demonstrating the metabolism of the parent FTOH by sequential removal of multiple CF2 groups. At 7 days postdose, 4-7% of the administered radioactivity was present in tissues, and for the majority, 14C concentrations were greater than whole blood with the highest concentration in fat, liver, thyroid, and adrenals. Distribution and excretion of a single 125-mg/kg [3-14C] 8-2 FTOH dermal dose following a 6-h exposure in rats was also determined. The majority of the dermal dose either volatilized from the skin (37%) or was removed by washing (29%). Following a 6-h dermal exposure and a 7-day collection period, excretion of total radioactivity via urine (< 0.1%) and feces (< 0.2%) was minor, and radioactivity concentrations in most tissues were below the limit of detection. Systemic availability of 8-2 FTOH following dermal exposure was negligible.
Human induced pluripotent stem cell-derived cardiomyocytes (hiPS-CMs) are capable of detecting drug-induced clinical arrhythmia, Torsade de Pointes (TdP), and QT prolongation. Efforts herein employ a broad set of structurally diverse drugs to optimize the predictive algorithm for applications in discovery toxicology and cardiac safety screening. The changes in the beat rhythm and rate of a confluent monolayer of hiPS-CMs by 88 marketed and 30 internal discovery compounds were detected with real-time cellular impedance measurement and quantified by measures of arrhythmic beating (IB20, lowest concentration inducing ≥ 20% arrhythmic [irregular, atypical] beats in 3 consecutive 20-s sweeps, and predicted proarrhythmic score [PPS]-IB20) or changes in beat rate (BR20, the lowest concentration inducing a reduction in beat rate of ≥ 20% at 3 consecutive sweeps compared with the time-matched vehicle control group, and PPS-BR20). Drug-induced arrhythmic beats and reductions in beat rates are predictive of clinical arrhythmia and QT prolongation, respectively. A threshold of ≤ 10 μM for class determination results in 82% in vitro-in vivo concordance for TdP prediction and 91% sensitivity for non-TdP arrhythmia detection, or 83% and 91% if clinically efficacious plasma (effective serum therapeutic concentration [C eff]) values are incorporated. This human cardiomyocyte arrhythmic risk (hCAR) model provides greater predictivity for torsadogenicity in humans compared with either human ether-a-go-go-related gene (hERG) inhibition (75%) or QT prolongation (81%). The concordance of beat rate reductions to predict clinical QT prolongation is 86%, or 87% when C eff is considered, which is greater than a hERG signal (80%). Further, arrhythmic beats resulting from cytotoxicity were identified by a distinct arrhythmic beating pattern, which occurred after the onset of cytolethality. This hCAR assay showed increased performance over existing preclinical tools in predicting clinical QT prolongation, arrhythmia, and TdP. Thus, hiPS-CMs are a relevant cell system to improve evaluating cardiac safety liabilities of drug candidates.
A symposium at the 40th anniversary of the Environmental Mutagen Society, held from October 24–28, 2009 in St. Louis, MO, surveyed the current status and future directions of genetic toxicology. This article summarizes the presentations and provides a perspective on the future. An abbreviated history is presented, highlighting the current standard battery of genotoxicity assays and persistent challenges. Application of computational toxicology to safety testing within a regulatory setting is discussed as a means for reducing the need for animal testing and human clinical trials, and current approaches and applications of in silico genotoxicity screening approaches across the pharmaceutical industry were surveyed and are reported here. The expanded use of toxicogenomics to illuminate mechanisms and bridge genotoxicity and carcinogenicity, and new public efforts to use high-throughput screening technologies to address lack of toxicity evaluation for the backlog of thousands of industrial chemicals in the environment are detailed. The Tox21 project involves coordinated efforts of four U.S. Government regulatory/research entities to use new and innovative assays to characterize key steps in toxicity pathways, including genotoxic and nongenotoxic mechanisms for carcinogenesis. Progress to date, highlighting preliminary test results from the National Toxicology Program is summarized. Finally, an overview is presented of ToxCast™, a related research program of the U.S. Environmental Protection Agency, using a broad array of high throughput and high content technologies for toxicity profiling of environmental chemicals, and computational toxicology modeling. Progress and challenges, including the pressing need to incorporate metabolic activation capability, are summarized.
In this paper, we describe an in silico first principal approach to predict the mutagenic potential of primary aromatic amines. This approach is based on the so-called "nitrenium hypothesis", which was developed by Ford et al. in the early 1990s. This hypothesis asserts that the mutagenic effect for this class of molecules is mediated through the transient formation of a nitrenium ion and that the stability of this cation is correlated with the mutagenic potential. Here we use quantum mechanical calculations at different levels of theory (semiempirical AM1, ab initio HF/3-21G, HF/6-311G(d,p), and DFT/B3LYP/6-311G(d,p)) to compute the stability of nitrenium ions. When applied to a test set of 257 primary aromatic amines, we show that this method can correctly differentiate between Ames active and inactive compounds, and furthermore that it is able to rationalize and predict SAR trends within structurally related chemical series. For this test set, the AM1 nitrenium stability calculations are found to provide a good balance between speed and accuracy, resulting in an overall accuracy of 85%, and sensitivity and specificity of 91% and 72%, respectively. The nitrenium-based predictions are also compared to the commercial software packages DEREK, MULTICASE, and the MOE-Toxicophore descriptor. One advantage of the approach presented here is that the calculation of relative stabilities results in a continuous spectrum of activities and not a simple yes/no answer. This allows us to observe and rationalize subtle trends due to the different electrostatic properties of the organic molecules. Our results strongly indicate that nitrenium ion stability calculations should be used as a complementary approach to assist the medicinal chemist in prioritizing and selecting nonmutagenic primary aromatic amines during preclinical drug discovery programs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.