Advances in nanofabrication have allowed the production of new and more reproducible substrates for the Raman detection of trace antimicrobials in water. The superior substrate uniformity combined with the ability to control surface morphology represents a significant step forward in the design of substrates with improved enhancement factors and trace-detection capabilities. The work presented herein successfully combines electron-beam lithography (EBL) and reactive ion-etching (RIE) protocols for the construction, testing, and validation of plasmonic hybrid morphology nanoarrays for the detection of arsenic antimicrobials in water. The fabricated substrates consist of 2500 μm(2) Ag-coated silicon dioxide (SiO2)/Si pillar nanoarrays of alternating hexagonal and elliptical features. Control of simple fabrication parameters such as inter-particle spacing (gap) and its orientation relative to the laser polarization vector (parallel or orthogonal) result in over a tenfold improvement in the apparent Raman response under optimized conditions. At a 633 nm excitation frequency, the best substrate performance was observed on parallel-oriented features with a 200 nm gap, with over one order of magnitude increase in the apparent surface-enhanced Raman scattering (SERS) signal relative to standard silver-polydimethylsiloxane (Ag-PDMS) nanocomposites. Monitoring of the characteristic As-C stretching band at 594 cm(-1) allowed the detection of arsenic antimicrobials in water well within the parts per million range. Calculated surface-enhancement factors (SEF) for this substrate, employing 532, 785, and 633 nm excitation wavelengths, was within five, six, and seven orders of magnitude, respectively. The effect of substrate morphology and nanofabrication process on the Raman enhancement factor is presented.
The use of nanomachining methods capable of reproducible construction of nano-arrayed devices have revolutionized the field of plasmonic sensing by the introduction of a diversity of rationally engineered designs. Significant strides have been made to fabricate plasmonic platforms with tailored interparticle gaps to improve their performance for surface-enhanced Raman scattering (SERS) applications. Over time, a dichotomy has emerged in the implementation of SERS for analytical applications, the construction of substrates, optimization of interparticle spacing as a means to optimize electromagnetic field enhancement at the localized surface plasmon level, and the substrate sensitivity over extended areas to achieve quantitative performance. This work assessed the enhancement factor of plasmonic Ag/SiO2/Si disc-on-pillar (DOP) arrays of variable pitch with its analytical performance for quantitative applications. Experimental data were compared with those from finite-difference time-domain (FDTD) simulations used in the optimization of the array dimensions. A self-assembled monolayer (SAM) of benzenethiol rendered highly reproducible signals (RSD ∼4–10%) and SERS substrate enhancement factor (SSEF) values in the orders of 106–108 for all pitches. Spectra corresponding to rhodamine 6G (R6G) and 4-aminobenzoic acid demonstrated the advantages of using the more densely packed DOP arrays with a 160 nm pitch (gap = 40 nm) for quantitation in spite of the strongest SSEF was attained for a pitch of 520 nm corresponding to a 400 nm gap.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.