Several studies have demonstrated that mammals, birds and fish use comparable spatial learning strategies. Unfortunately, except in insects, few studies have investigated spatial learning mechanisms in invertebrates. Our study aimed to identify the strategies used by cuttlefish (Sepia officinalis) to solve a spatial task commonly used with vertebrates. A new spatial learning procedure using a T-maze was designed. In this maze, the cuttlefish learned how to enter a dark and sandy compartment. A preliminary test confirmed that individual cuttlefish showed an untrained side-turning preference (preference for turning right or left) in the T-maze. This preference could be reliably detected in a single probe trial. In the following two experiments, each individual was trained to enter the compartment opposite to its side-turning preference. In Experiment 1, distal visual cues were provided around the maze. In Experiment 2, the T-maze was surrounded by curtains and two proximal visual cues were provided above the apparatus. In both experiments, after acquisition, strategies used by cuttlefish to orient in the T-maze were tested by creating a conflict between the formerly rewarded algorithmic behaviour (turn, response learning) and the visual cues identifying the goal (place learning). Most cuttlefish relied on response learning in Experiment 1; the two strategies were used equally often in Experiment 2. In these experiments, the salience of cues provided during the experiment determined whether cuttlefish used response or place learning to solve this spatial task. Our study demonstrates for the first time the presence of multiple spatial strategies in cuttlefish that appear to closely parallel those described in vertebrates.
This study investigates effects of the environment on the maturation of body patterns in cuttlefish (Sepia officinalis). Cuttlefish were reared either individually on a uniform background, which the authors have termed uniform-solitary conditions (Group A), or grouped on variegated backgrounds, which the authors have termed varied-social conditions (Group B). At Days 1, 15, 30, and 60, juveniles were placed individually in perceptually different testing conditions, either on small, variegated stones or on a uniform pale gray background. During development in both testing conditions, juveniles from Group B concealed themselves differently from those from Group A. Thus, it appears that the response to the background is subject to individual experience. Some hypotheses are discussed relating to the effect of early experience on the maturation of body patterns.
When shown prawns in a glass tube, cuttlefish quickly learn to inhibit their predatory behavior. By using a visual learning paradigm, we studied training and retention performances of cuttlefish aged from 8 to 90 days. We found an improvement in the acquisition of learning abilities during the first 2 months of life as well as an increase of 24-hr retention performance between 30 and 90 days of age. Using morphometric measurements of different lobes of the central nervous system, we correlated the emergence of these learning abilities with the postembryonic development of related nervous structures. Our results show that only the growth of the superior frontal and vertical lobes appears to be significantly correlated with the improvement of learning and long-term retention performances. Thus, as found in earlier data collected in Octopus, the vertical lobe complex of the cuttlefish seems to be involved in these learning processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.