We present a new flame-based aerosol reactor configuration that combines thermal decomposition and hydrogen reduction to produce metal nanoparticles. This approach uses a fuel-rich hydrogen flame as a source of low-cost energy to initiate particle synthesis, but separates the flame chemistry from the particle formation chemistry. Hot combustion products pass through a nozzle to produce a high-temperature reducing jet. A liquid precursor solution is rapidly atomized, evaporated, and decomposed by the expanding jet, initiating particle formation. In particular, here we have produced carbon-coated copper nanoparticles from an aqueous copper formate precursor solution and characterized them by aerosol mobility distribution measurements, electron microscopy, and x-ray diffraction. Copper serves here as a prototype for nonoxide materials that are generally difficult to produce in flamebased reactors. This work demonstrates that such materials can be produced in substantial quantities with particle diameters below 50 nm in this new process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.