Assessments of safety and efficacy are crucial before human ESC (hESC) therapies can move into the clinic. Two important early potential hESC applications are the use of retinal pigment epithelium (RPE) for the treatment of age-related macular degeneration and Stargardt disease, an untreatable form of macular dystrophy that leads to early-onset blindness. Here we show long-term functional rescue using hESC-derived RPE in both the RCS rat and Elov14 mouse, which are animal models of retinal degeneration and Stargardt, respectively. Good Manufacturing Practice-compliant hESC-RPE survived subretinal transplantation in RCS rats for prolonged periods (>220 days). The cells sustained visual function and photoreceptor integrity in a dose-dependent fashion without teratoma formation or untoward pathological reactions. Near-normal functional measurements were recorded at >60 days survival in RCS rats. To further address safety concerns, a Good Laboratory Practice-compliant study was carried out in the NIH III immune-deficient mouse model. Long-term data (spanning the life of the animals) showed no gross or microscopic evidence of teratoma/ tumor formation after subretinal hESC-RPE transplantation. These results suggest that hESCs could serve as a potentially safe and inexhaustible source of RPE for the efficacious treatment of a range of retinal degenerative diseases.
Embryonic stem cells promise to provide a well-characterized and reproducible source of replacement tissue for human clinical studies. An early potential application of this technology is the use of retinal pigment epithelium (RPE) for the treatment of retinal degenerative diseases such as macular degeneration. Here we show the reproducible generation of RPE (67 passageable cultures established from 18 different hES cell lines); batches of RPE derived from NIH-approved hES cells (H9) were tested and shown capable of extensive photoreceptor rescue in an animal model of retinal disease, the Royal College of Surgeons (RCS) rat, in which photoreceptor loss is caused by a defect in the adjacent retinal pigment epithelium. Improvement in visual performance was 100% over untreated controls (spatial acuity was approximately 70% that of normal nondystrophic rats) without evidence of untoward pathology. The use of somatic cell nuclear transfer (SCNT) and/or the creation of banks of reduced complexity human leucocyte antigen (HLA) hES-RPE lines could minimize or eliminate the need for immunosuppressive drugs and/or immunomodulatory protocols.
The retrograde transport of horseradish peroxidase has been used to identify efferent cells in area 17 of the macaque. Cells projecting to the lateral geniculate nucleus are small to medium sized pyramidal neurons with somata in lamina 6 and the adjacent white matter. The projection to the parvocellular division arises preferentially from the upper half of lamina 6, while that to the magnocellular division arises preferentially from the lower part of the lamina. The projection to both superior colliculus and inferior pulvinar arises from all sizes of pyramidal neurons lying in lamina 58 (Lund and Boothe, '75); at least pyramidal neurons of lamina 5B send collateral axon branches to both destinations. Injections with extensive spread of horseradish peroxidase show that many cells of lamina 4B and the large pyramidal neurons of upper lamina 6 also project extrinsically but their terminal sites have not been identified. Other studies have indicated that cells of laminae 2 and 3 project to areas 18 and 19. Therefore every lamina of the visual cortex, with the exception of those receiving a direct thalamic input, contains cells projecting extrinsically. Further, each lamina projects to a different destination and from Golgi studies can be shown to contain cells with specific patterns of dendritic branching which relate to the distribution of thalamic afferents and to the patterns of intracortical connections. These findings emphasise the significance of the horizontal organisation of the cortex with relation to the flow of information through it and contrast with the current concept of columnar organisation shown in physiological studies.
The rat is used widely to study various aspects of vision including developmental events and numerous pathologies, but surprisingly little is known about the functional properties of single neurons in the rat primary visual cortex (V1). These were investigated in the anesthetized (Hypnorm-Hypnovel), paralyzed animal by presenting gratings of different orientations, spatial and temporal frequencies, dimensions, and contrasts. Stimulus presentation and data collection were automated. Most neurons (190/205) showed sharply tuned (=30 degrees bandwidth at half height) orientation selectivity with a bias for horizontal stimuli (31%). Analysis of response modulation of oriented cells showed a bimodal distribution consistent with the distinction between simple and complex cell types. Orientation specific interactions occurred between the center and the periphery of receptive fields, usually resulting in strong inhibition to center stimulation when both stimuli had the same orientation. There was no evidence for orientation columns nor for orderly change in optimal orientation with tangential tracks through V1. Responses were elicited by spatial frequencies ranging from zero (no grating) to 1.2 cycle/degree (c/ degrees ), peaking at 0.1 c/ degrees, and with a modal cutoff of 0.6 c/ degrees. Half of the neurons responded optimally to drifting gratings rather than flashing uniform field stimuli. Directional preference was seen for 59% of oriented units at all depths in the cortex. Optimal stimuli velocities varied from 10 to 250 degrees /s. Some units, mainly confined to layer 4, responded to velocities as high as 700 degrees /s. Response versus contrast curves (best fit with Naka-Rushton) varied from nearly linear to extremely steep (mean contrast semisaturation 50% and threshold 6%). There was a trend for cells from superficial layers to be more selective to different stimulus parameters than deeper layers cells. We conclude that neurons in rat V1 have complex and diverse visual properties, necessary for precise visual form perception with low spatial resolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.