This study demonstrated that although walking at an adequate speed, individuals with UVH made fewer, smaller, and slower head movements symmetrically in both directions compared with healthy individuals and did not decouple their head movement relative to their trunk when required to make larger purposeful head turns during community ambulation.
With use of wearable sensors, deficits in head-trunk kinematics were characterized along with a spectrum of disability in individuals in the subacute stage after VS surgery compared with healthy individuals. Future research is needed to fully understand how patterns of exposure to head-on-trunk movements influence the trajectory of recovery of head-trunk coordination during community mobility.
Arteries play a critical role by carrying oxygen and essential nutrients throughout the body. However, trauma to the head and neck, as well as surgical interventions, can overstretch arteries and alter their mechanics. In order to better understand the cause of these changes, we employ a novel collagen hybridizing peptide (CHP) to study collagen damage in overstretched arteries. Our approach is unique in that we go beyond the fiber- and fibril-level and characterize molecular-level disruption. In addition, we image and quantify fluorescently-labeled CHP to reveal a new structure-property relationship in arterial damage. We anticipate that our approach can be used to better understand arterial damage in clinically relevant settings such as angioplasty and vascular trauma.
A consequence of vestibular loss is increased coupling of head-on-trunk motion, particularly in the yaw plane, which adversely affects community mobility in these patients. Inertial sensors may provide a means of better understanding normal decoupling behaviors in community environments, but demonstration of their validity and responsiveness is needed. This paper examined the validity and measurement sensitivity of inertial sensors in quantifying yaw plane head-trunk decoupling during unrestricted and restricted cervical motion conditions in healthy adults. Peak head turn amplitude and velocity, head-trunk coupling, and trunk turn lag were simultaneously measured using wearable inertial sensors and a motion capture system. Agreement between motion capture and the inertial sensors was excellent (intraclass correlation coefficients(2,1) >.75) for all measured outcomes during a static head turn task and for peak head turn velocity and trunk turn lag during a walking task. Cervical collar use significantly reduced head turn amplitude and velocity, and increased coupling of head-on-trunk motion (p<.02). Measurement of head and trunk coordination during gait activities using inertial sensors is valid and feasible. Amplitude and velocity outcomes were most reliable and responsive to experimental alterations in head motion. Using inertial sensors to quantify abnormal kinematics following vestibular loss may provide insights into recovery of head-trunk coordination in these individuals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.