Abstract-Recent statistics show that a large number of traffic accidents occur due to a loss of control on vehicle by the driver. This is mainly due to a loss of friction between tire and road. Many of these accidents could be avoided by introducing ADAS (Advanced Driver Assistance Systems) based on the detection of loss of tire/road friction. Friction (more specifically the maximum coefficient of friction) which is a parameter of tire/road interaction, mainly depends on the state of the road (dry, wet, snow, ice) and is closely related to the efforts at the tire level. In this paper, we propose, a new method for the estimation of the maximum tire/road friction coefficient, to automatically detect possible state of loss of friction which result in an abrupt change on the road state. This method is based on an iterative quadratic minimization of the error between the developed lateral force and the model of tire/road interaction. Results validate the application of the method.
This paper presents a novel observer-based robust fault predictive control (OBRFPC) approach for a wind turbine time-delay system subject to constraints, actuator/sensor faults, and external disturbances. The proposed approach is based on an augmented state-space representation that contains state-space variables and estimation errors. The proposed augmented representation is then used to synthesize a robust predictive controller. In addition, an observer is developed and used to estimate both state variables and actuator/sensor faults. To ensure that the proposed approach has disturbance rejection capabilities, the disturbance estimates were merged with the prediction model. In addition, the disturbance rejection capabilities and fault tolerance were insured by formulating the control process as an optimization problem subject to constraints in terms of linear matrix inequalities (LMIs). As a result, the controller gains are acquired by solving an LMI problem to guarantee input-to-state stability in the presence of sensor and actuator faults. A simulation example is conducted on a nonlinear wind turbine (1 MW) model with 3 blades, a horizontal axis, and upwind variable speed subject to actuator/sensor faults in the pitch system. The results demonstrate the ability of the proposed method in dealing with nonlinear systems subject to external disturbances and keeping the control performance acceptable in the presence of actuator/sensor faults.
The design, micro-fabrication, and characterization of a resistance temperature detector (RTD) based micro sensor for minimally invasive breathing analysis and monitoring is presented. Experimental results demonstrate that the change in air temperature while inhaling and exhaling can be transduced into a time varying electrical signal, which is subsequently used to determine the breathing frequency (respiratory rate). The RTD is placed into a Wheatstone bridge to simultaneously reduce the sensor’s output noise and improve overall system accuracy. The proposed design could potentially aid health care providers in the determination of respiratory rates, which is of critical importance during the current COVID-19 pandemic.
In this paper, a new modified particle swarm optimization, m-PSO, is proposed, in which the novelty consists of proposing a fitness-based particle swarm optimization algorithm, PSO, which adapts the particles’ behavior rather than the PSO parameters and where particles evolve differently considering their level of optimality. A multi-objective optimization, MO, approach is then built based on m-PSO. In the proposed method, particles with fitness better than the mean local best are only updated toward the global best, while others keep moving in a classical manner. The proposed m-PSO and its multi-objective version MO-m-PSO are then employed to solve the inverse kinematics of a 5-DOF robotic arm which is 3D-printed for educational use. In the MO-m-PSO approach of inverse kinematics, the arm IK problem is formulated as a multi-objective problem searching for an appropriate solution that takes into consideration the end-effector position and orientation with a Pareto front strategy. The IK problem is addressed as the optimization of the end-effector position and orientation based on the forward kinematics model of the systems which is built using the Denavit–Hartenberg approach. Such an approach allows to avoid classical inverse kinematics solvers challenges such as singularities, which may simply harm the existence of an inverse expression. Experimental investigations included the capacity of the proposal to handle random single points in the workspace and also a circular path planning with a specific orientation. The comparative analysis showed that the mono-objective m-PSO is better than the classical PSO, the CSA, and SSA. The multi-objective variants returned accurate results, fair and better solutions compared to multi-objective variants of MO-PSO, MO-JAYA algorithm, and MO-CSA. Even if the proposed method were applied to solve the inverse kinematics of and educational robotics arms for a single point as well as for a geometric shape, it may be transposed to solve related industrial robotized arms withthe only condition of having their forward kinematics model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.