The paper's main contributions are a compendium of problems that are complete for symmetric logarithmic space (SL), a collection of material relating to SL, a list of open problems, and an extension to the number of problems known to be SL-complete. Complete problems are one method of studying SL, a class for which programming is nonintuitive. Our exposition helps make the class SL less mysterious and more accessible to other researchers.
In this paper we examine a number of models that generate random fractals. The models are studied using the tools of computational complexity theory from the perspective of parallel computation. Diffusion limited aggregation and several widely used algorithms for equilibrating the Ising model are shown to be highly sequential; it is unlikely they can be simulated efficiently in parallel. This is in contrast to Mandelbrot percolation that can be simulated in constant parallel time. Our research helps shed light on the intrinsic complexity of these models relative to each other and to different growth processes that have been recently studied using complexity theory. In addition, the results may serve as a guide to simulation physics.
This paper investigates the parallel complexity of several non-equilibrium growth models. Invasion percolation, Eden growth, ballistic deposition and solid-on-solid growth are all seemingly highly sequential processes that yield self-similar or self-affine random clusters. Nonetheless, we present fast parallel randomized algorithms for generating these clusters. The running times of the algorithms scale as O(log 2 N ), where N is the system size, and the number of processors required scale as a polynomial in N . The algorithms are based on fast parallel procedures for finding minimum weight paths; they illuminate the close connection between growth models and self-avoiding paths in random environments. In addition to their potential practical value, our algorithms serve to classify these growth models as less complex than other growth models, such as diffusion-limited aggregation, for which fast parallel algorithms probably do not exist.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.