Pierson syndrome is a congenital nephrotic syndrome with eye and neurologic defects caused by mutations in laminin 2 (), a major component of the glomerular basement membrane (GBM). Pathogenic missense mutations in human LAMB2 cluster in or near the laminin amino-terminal (LN) domain, a domain required for extracellular polymerization of laminin trimers and basement membrane scaffolding. Here, we investigated an LN domain missense mutation, LAMB2-S80R, which was discovered in a patient with Pierson syndrome and unusually late onset of proteinuria. Biochemical data indicated that this mutation impairs laminin polymerization, which we hypothesized to be the cause of the patient's nephrotic syndrome. Testing this hypothesis in genetically altered mice showed that the corresponding amino acid change (LAMB2-S83R) alone is not pathogenic. However, expression of LAMB2-S83R significantly increased the rate of progression to kidney failure in a mouse model of autosomal recessive Alport syndrome and increased proteinuria in females that exhibit a mild form of X-linked Alport syndrome due to mosaic deposition of collagen 345(IV) in the GBM. Collectively, these data show the pathogenicity of LAMB2-S80R and provide the first evidence of genetic modification of Alport phenotypes by variation in another GBM component. This finding could help explain the wide range of Alport syndrome onset and severity observed in patients with Alport syndrome, even for family members who share the same mutation. Our results also show the complexities of using model organisms to investigate genetic variants suspected of being pathogenic in humans.
The importance of the glomerular basement membrane (GBM) in glomerular filtration is underscored by the manifestations of Alport and Pierson syndromes, caused by defects in type IV collagen a3a4a5 and the laminin b2 chain, respectively. Lamb2 null mice, which model the most severe form of Pierson syndrome, exhibit proteinuria prior to podocyte foot process effacement and are therefore useful for studying GBM permselectivity. We hypothesize that some LAMB2 missense mutations that cause mild forms of Pierson syndrome induce GBM destabilization with delayed effects on podocytes. While generating a CRISPR/Cas9-mediated analogue of a human LAMB2 missense mutation in mice, we identified a 44-amino acid deletion (LAMB2-Del44) within the laminin N-terminal domain, a domain mediating laminin polymerization. Laminin heterotrimers containing LAMB2-Del44 exhibited a 90% reduction in polymerization in vitro that was partially rescued by type IV collagen and nidogen. Del44 mice showed albuminuria at 1.8-6.0 g/g creatinine (ACR) at one to two months, plateauing at an average 200 g/g ACR at 3.7 months, when GBM thickening and hallmarks of nephrotic syndrome were first observed. Despite the massive albuminuria, some Del44 mice survived for up to 15 months. Blood urea nitrogen was modestly elevated at seven-nine months. Eight to nine-month-old Del44 mice exhibited glomerulosclerosis and interstitial fibrosis. Similar to Lamb2 À/À mice, proteinuria preceded foot process effacement. Foot processes were widened but not effaced at one-two months despite the high ACRs. At three months some individual foot processes were still observed amid widespread effacement. Thus, our chronic model of nephrotic syndrome may prove useful to study filtration mechanisms, long-term proteinuria with preserved kidney function, and to test therapeutics.
The glomerular basement membrane (GBM) is a critical component of the kidney’s blood filtration barrier. Alport syndrome, a hereditary disease leading to kidney failure, is caused by the loss or dysfunction of the GBM’s major collagen type IV (COL4) isoform α3α4α5. The constituent COL4 α-chains assemble into heterotrimers in the endoplasmic reticulum before secretion into the extracellular space. If any one of the α3-, α4-, or α5-chains is lost due to mutation of one of the genes, then the entire heterotrimer is lost. Patients with Alport syndrome typically have mutations in the X-linked COL4A5 gene or uncommonly have the autosomal recessive form of the disease due to COL4A3 or COL4A4 mutations. Treatment for Alport syndrome is currently limited to angiotensin-converting enzyme inhibition or angiotensin receptor blockers. Experimental approaches in Alport mice have demonstrated that induced expression of COL4A3, either widely or specifically in podocytes of Col4a3−/− mice, can abrogate disease progression even after establishment of the abnormal GBM. While targeting podocytes in vivo for gene therapy is a significant challenge, the more accessible glomerular endothelium could be amenable for mutant gene repair. In the present study, we expressed COL4A3 in Col4a3−/− Alport mice using an endothelial cell-specific inducible transgenic system, but collagen-α3α4α5(IV) was not detected in the GBM or elsewhere, and the Alport phenotype was not rescued. Our results suggest that endothelial cells do not express the Col4a3/a4/a5 genes and should not be viewed as a target for gene therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.