YY1 represses transcription when bound upstream of transcriptional initiation sites. This repression can be relieved by adenovirus E1A. Here, we present genetic evidence that the ability of E1A to relieve YY1 repression was impaired by mutations that affect EIA binding to its associated protein p300. This suggests that E1A may modulate the repressor activity of YY1 by binding to p300, which may be physically complexed with YY1. A YY1/p300 protein complex in vivo was demonstrated by several independent approaches, and the YYl-interacting domain was mapped to the carboxy-terminal region of p300, distinct from the E1A-binding site. Unlike E2F/RB, the YY1/p300 complex is not disrupted by E1A. Functional studies using recombinant p300 demonstrated unequivocally that p300 is capable of mediating E1A-induced transcriptional activation through YY1. Taken together, these results reveal, for the first time, a YY1/p300 complex that is targeted by EIA and demonstrate a function for p300 in mediating interactions between YY1 and E1A. Our data thus identify YYI as a partner protein for p300 and uncover a molecular mechanism for the relief of YYl-mediated repression by E1A.
Two different severe acute respiratory syndrome (SARS) vaccine strategies were evaluated for their ability to protect against live SARS coronavirus (CoV) challenge in a murine model of infection. A whole killed (inactivated by b-propiolactone) SARS-CoV vaccine and a combination of two adenovirus-based vectors, one expressing the nucleocapsid (N) and the other expressing the spike (S) protein (collectively designated Ad S/N), were evaluated for the induction of serum neutralizing antibodies and cellular immune responses and their ability to protect against pulmonary SARS-CoV replication. The whole killed virus (WKV) vaccine given subcutaneously to 129S6/SvEv mice was more effective than the Ad S/N vaccine administered either intranasally or intramuscularly in inhibiting SARS-CoV replication in the murine respiratory tract. This protective ability of the WKV vaccine correlated with the induction of high serum neutralizing-antibody titres, but not with cellular immune responses as measured by gamma interferon secretion by mouse splenocytes. Titres of serum neutralizing antibodies induced by the Ad S/N vaccine administered intranasally or intramuscularly were significantly lower than those induced by the WKV vaccine. However, Ad S/N administered intranasally, but not intramuscularly, significantly limited SARS-CoV replication in the lungs. Among the vaccine groups, SARS-CoV-specific IgA was found only in the sera of mice immunized intranasally with Ad S/N, suggesting that mucosal immunity may play a role in protection for the intranasal Ad S/N delivery system. Finally, the sera of vaccinated mice contained antibodies to S, further suggesting a role for this protein in conferring protective immunity against SARS-CoV infection. (Marra et al., 2003;Rota et al., 2003) and by experimental infection of macaques to fulfil Koch's postulates . 0008-1579 G 2006 SGM Printed in Great BritainCurrently, there is no effective treatment for SARS. Prevention through contact-reduction or transmission-blocking measures has been the only means available to modify the devastating impact of this illness. Prevention through vaccination would be an attractive alternative that is less reliant on individual case detection to be effective. No vaccines are currently licensed for any of the human CoVs, but effective vaccines have been produced for some animal CoVs, such as certain strains of Infectious bronchitis virus (poultry), Bovine coronavirus and Canine coronavirus (Cavanagh, 2003;Enjuanes et al., 1995;Pratelli et al., 2003;Saif, 2004;Takamura et al., 2002). Individuals convalescing from SARS develop high titres of neutralizing antibodies (Tan et al., 2004) and the appearance of antibodies coincides with the onset of resolution of SARS pneumonia Woo et al., 2004). Thus, there is some optimism that an effective vaccine against SARS-CoV may also be possible.Coronavirus spike (S) proteins have long been known to be a major determinant in coronavirus pathogenesis, given that this viral protein interacts with cellular receptors as well as con...
Background: Methicillin-resistant Staphylococcus aureus (MRSA) PK has been recently identified as a potential novel antimicrobial drug target. Results: Screening of a marine extract library led to the identification of several bis-indole alkaloids as novel potent and selective MRSA PK inhibitors. Conclusion:These results help to understand the mechanism of the antibacterial activities of marine bis-indole alkaloids. Significance: This study provides the basis for development of potential novel antimicrobials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.