Implicit integration schemes, such as Runge-Kutta methods, are widely used in mathematics and engineering to numerically solve ordinary differential equations. Every integration method requires one to choose a step-size, h, for the integration. If h is too large or too small the efficiency of an implicit scheme is relatively low. As every implicit integration scheme has a global error inherent to the scheme, we choose the total number of computations in order to achieve a prescribed global error as a measure of efficiency of the integration scheme. In this paper, we propose the idea of choosing h by minimizing an efficiency function for general Runge-Kutta integration routines. We show the efficacy of this approach on some standard problems found in the literature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.