SUMMARY A handful of tumor-derived cell lines form the mainstay of cancer therapeutic development, yielding drugs with impact typically measured as months to disease progression. To develop more effective breast cancer therapeutics and more readily understand their clinical impact, we constructed a functional metabolic portrait of 46 independently-derived breast cell lines. Our analysis of glutamine uptake and dependence identified a subset of triple negative samples that are glutamine auxotrophs. Ambient glutamine indirectly supports environmental cystine acquisition via the xCT antiporter, which is expressed on 1/3 of triple negative tumors in vivo. xCT inhibition with the clinically approved anti-inflammatory Sulfasalazine decreases tumor growth revealing a therapeutic target in breast tumors of poorest prognosis, and a lead compound for rapid, effective drug development.
BackgroundThe overall influence of gene interaction in human disease is unknown. In cystic fibrosis (CF) a single allele of the cystic fibrosis transmembrane conductance regulator (CFTR-ΔF508) accounts for most of the disease. In cell models, CFTR-ΔF508 exhibits defective protein biogenesis and degradation rather than proper trafficking to the plasma membrane where CFTR normally functions. Numerous genes function in the biogenesis of CFTR and influence the fate of CFTR-ΔF508. However it is not known whether genetic variation in such genes contributes to disease severity in patients. Nor is there an easy way to study how numerous gene interactions involving CFTR-ΔF would manifest phenotypically.MethodsTo gain insight into the function and evolutionary conservation of a gene interaction network that regulates biogenesis of a misfolded ABC transporter, we employed yeast genetics to develop a 'phenomic' model, in which the CFTR-ΔF508-equivalent residue of a yeast homolog is mutated (Yor1-ΔF670), and where the genome is scanned quantitatively for interaction. We first confirmed that Yor1-ΔF undergoes protein misfolding and has reduced half-life, analogous to CFTR-ΔF. Gene interaction was then assessed quantitatively by growth curves for approximately 5,000 double mutants, based on alteration in the dose response to growth inhibition by oligomycin, a toxin extruded from the cell at the plasma membrane by Yor1.ResultsFrom a comparative genomic perspective, yeast gene interactions influencing Yor1-ΔF biogenesis were representative of human homologs previously found to modulate processing of CFTR-ΔF in mammalian cells. Additional evolutionarily conserved pathways were implicated by the study, and a ΔF-specific pro-biogenesis function of the recently discovered ER membrane complex (EMC) was evident from the yeast screen. This novel function was validated biochemically by siRNA of an EMC ortholog in a human cell line expressing CFTR-ΔF508. The precision and accuracy of quantitative high throughput cell array phenotyping (Q-HTCP), which captures tens of thousands of growth curves simultaneously, provided powerful resolution to measure gene interaction on a phenomic scale, based on discrete cell proliferation parameters.ConclusionWe propose phenomic analysis of Yor1-ΔF as a model for investigating gene interaction networks that can modulate cystic fibrosis disease severity. Although the clinical relevance of the Yor1-ΔF gene interaction network for cystic fibrosis remains to be defined, the model appears to be informative with respect to human cell models of CFTR-ΔF. Moreover, the general strategy of yeast phenomics can be employed in a systematic manner to model gene interaction for other diseases relating to pathologies that result from protein misfolding or potentially any disease involving evolutionarily conserved genetic pathways.
Purpose We describe the clinical implementation of genome-wide DNA methylation analysis in rare disorders across the EpiSign diagnostic laboratory network and the assessment of results and clinical impact in the first subjects tested. Methods We outline the logistics and data flow between an integrated network of clinical diagnostics laboratories in Europe, the United States, and Canada. We describe the clinical validation of EpiSign using 211 specimens and assess the test performance and diagnostic yield in the first 207 subjects tested involving two patient subgroups: the targeted cohort (subjects with previous ambiguous/inconclusive genetic findings including genetic variants of unknown clinical significance) and the screening cohort (subjects with clinical findings consistent with hereditary neurodevelopmental syndromes and no previous conclusive genetic findings). Results Among the 207 subjects tested, 57 (27.6%) were positive for a diagnostic episignature including 48/136 (35.3%) in the targeted cohort and 8/71 (11.3%) in the screening cohort, with 4/207 (1.9%) remaining inconclusive after EpiSign analysis. Conclusion This study describes the implementation of diagnostic clinical genomic DNA methylation testing in patients with rare disorders. It provides strong evidence of clinical utility of EpiSign analysis, including the ability to provide conclusive findings in the majority of subjects tested.
Summary Overlapping clinical phenotypes and an expanding breadth and complexity of genomic associations are a growing challenge in the diagnosis and clinical management of Mendelian disorders. The functional consequences and clinical impacts of genomic variation may involve unique, disorder-specific, genomic DNA methylation episignatures. In this study, we describe 19 novel episignature disorders and compare the findings alongside 38 previously established episignatures for a total of 57 episignatures associated with 65 genetic syndromes. We demonstrate increasing resolution and specificity ranging from protein complex, gene, sub-gene, protein domain, and even single nucleotide-level Mendelian episignatures. We show the power of multiclass modeling to develop highly accurate and disease-specific diagnostic classifiers. This study significantly expands the number and spectrum of disorders with detectable DNA methylation episignatures, improves the clinical diagnostic capabilities through the resolution of unsolved cases and the reclassification of variants of unknown clinical significance, and provides further insight into the molecular etiology of Mendelian conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.