This study aimed (1) to profile the plantar loading characteristics when performing the basketball lay-up in a realistic setting and (2) to determine the number of trials necessary to establish a stable mean for plantar loading variables during the lay-up. Thirteen university male basketball players [age: 23.0 (1.4) years, height: 1.75 (0.05) m, mass: 68.4 (8.6) kg] performed ten successful basketball lay-ups from a stationary position. Plantar loading variables were recorded using the Novel Pedar-X in-shoe system. Loading variables including peak force, peak pressure, and pressure-time integral were extracted from eight foot regions. Performance stability of plantar loading variables during the take-off and landing steps were assessed using the sequential averaging technique and intra-class correlation coefficient (ICC). High plantar loadings were experienced at the heel during the take-off steps, and both the heel and forefoot regions upon landing. The sequential estimation technique revealed a five-eight trial range to achieve a stable mean across all plantar loading variables, whereas ICC analysis was insensitive to inter-trial differences of repeated lay-up performances. Future studies and performance evaluation protocols on plantar loading during basketball lay-ups should include at least eight trials to ensure that the measurements obtained are sufficiently stable.
This study aimed to examine the influence of court surface on foot loading when executing typical basketball tasks. Thirteen male basketball players performed three basketball-related tasks: Layup, jump shot, and maximal effort sprint on wooden and asphalt courts. In-shoe plantar loading was recorded during the basketball movements and peak force (normalised to body weight) was extracted from eight-foot regions. Perceptions of discomfort at the ankle, knee, and back were surveyed using a 10-cm visual analogue scale. Landing from a layup on the wooden court resulted in elevated peak forces at the hallux (p = 0.022) and lesser toes (p = 0.007) compared with asphalt court. During the sprint acceleration step, higher peak forces were observed at the hallux (p = 0.048) and medial forefoot (p = 0.010) on wooden court. No difference between court surfaces was found for perception ratings at the ankle, knee, or back. These results suggested that players can experience greater impact forces at the toes and medial forefoot when performing basketball tasks on the more compliant wooden court than asphalt courts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.