Search engines, such as Google, assign scores to news articles based on their relevancy to a query. However, not all relevant articles for the query may be interesting to a user. For example, if the article is old or yields little new information, the article would be uninteresting. Relevancy scores do not take into account what makes an article interesting, which would vary from user to user. Although methods such as collaborative filtering have been shown to be effective in recommendation systems, in a limited user environment there are not enough users that would make collaborative filtering effective. We present a general framework for defining and measuring the "interestingness" of articles, incorporating user-feedback. We show 21% improvement over traditional IR methods.
We introduce multiple topic tracking (MTT) for iScore to better recommend news articles for users with multiple interests and to address changes in user interests over time. As an extension of the basic Rocchio algorithm, traditional topic detection and tracking, and single-pass clustering, MTT maintains multiple interest profiles to identify interesting articles for a specific user given user-feedback. Focusing on only interesting topics enables iScore to discard useless profiles to address changes in user interests and to achieve a balance between resource consumption and classification accuracy. Also by relating a topic's interestingness to an article's interestingness, iScore is able to achieve higher quality results than traditional methods such as the Rocchio algorithm.We identify several operating parameters that work well for MTT. Using the same parameters, we show that MTT alone yields high quality results for recommending interesting articles from several corpora. The inclusion of MTT improves iScore's performance by 9% to 14% in recommending news articles from the Yahoo! News RSS feeds and the TREC11 adaptive filter article collection. And through a small user study, we show that iScore can still perform well when only provided with little user feedback.
In the field of sensor networks, data integration and collaboration, and intelligence gathering efforts, information on the quality of data sources are important but are often not available. We describe a technique to rank data sources by observing and comparing their behavior (i.e., the data produced by data sources) to rank. Intuitively, our measure characterizes data sources that agree with accurate or high-quality data sources as likely accurate. Furthermore, our measure includes a temporal component that takes into account a data source's past accuracy in evaluating its current accuracy. Initial experimental results based on simulation data to support our hypothesis demonstrate high precision and recall on identifying the most accurate data sources.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.