Big Data though it is a hype up-springing many technical challenges that confront both academic research communities and commercial IT deployment, the root sources of Big Data are founded on data streams and the curse of dimensionality. It is generally known that data which are sourced from data streams accumulate continuously making traditional batch-based model induction algorithms infeasible for real-time data mining. Feature selection has been popularly used to lighten the processing load in inducing a data mining model. However, when it comes to mining over high dimensional data the search space from which an optimal feature subset is derived grows exponentially in size, leading to an intractable demand in computation. In order to tackle this problem which is mainly based on the high-dimensionality and streaming format of data feeds in Big Data, a novel lightweight feature selection is proposed. The feature selection is designed particularly for mining streaming data on the fly, by using accelerated particle swarm optimization (APSO) type of swarm search that achieves enhanced analytical accuracy within reasonable processing time. In this paper, a collection of Big Data with exceptionally large degree of dimensionality are put under test of our new feature selection algorithm for performance evaluation.
Bulk water in the WW diet stimulated decreases in EI and BW in cats. The impact of water content on energy density and food consumption may help promote weight loss in cats.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.