Purine biosynthetic enzymes organize into dynamic cellular bodies called purinosomes. Little is known about the spatiotemporal control of these structures. Using super-resolution microscopy, we demonstrated that purinosomes colocalized with mitochondria, and these results were supported by isolation of purinosome enzymes with mitochondria. Moreover, the number of purinosome containing cells responded to dysregulation of mitochondrial function and metabolism. To explore the role of intracellular signaling, we performed a kinome screen using a label-free assay and identified that mTOR influenced purinosome assembly. mTOR inhibition disrupted purinosome-mitochondria colocalization and suppressed purinosome formation stimulated by mitochondria dysregulation. Collectively, our data suggests an mTOR-mediated link between purinosomes and mitochondria and suggests a general means by which mTOR regulates nucleotide metabolism by spatiotemporal control over protein association.
Background: Metabolic enzymes have been hypothesized to assemble into complex to respond to cellular metabolism changes. Results: De novo purine biosynthesis increases in purinosome-containing cells. Conclusion: Purine metabolism is adjusted by purinosome assembly. Significance: This study indicates that purinosome is a functional multienzyme complex.
The de novo purine biosynthetic pathway relies on six enzymes to catalyze the conversion of phosphoribosylpyrophosphate to inosine 5′-monophosphate. Under purine-depleted conditions, these enzymes form a multienzyme complex known as the purinosome. Previous studies have revealed the spatial organization and importance of the purinosome within mammalian cancer cells. In this study, time-lapse fluorescence microscopy was used to investigate the cell cycle dependency on purinosome formation in two cell models. Results in HeLa cells under purine-depleted conditions demonstrated a significantly higher number of cells with purinosomes in the G 1 phase, which was further confirmed by cell synchronization. HGPRT-deficient fibroblast cells also exhibited the greatest purinosome formation in the G 1 phase; however, elevated levels of purinosomes were also observed in the S and G 2 /M phases. The observed variation in cell cycle-dependent purinosome formation between the two cell models tested can be attributed to differences in purine biosynthetic mechanisms. Our results demonstrate that purinosome formation is closely related to the cell cycle.
Vascular cell responses to exogenous heparin have been documented to include decreased vascular smooth muscle cell proliferation following decreased ERK pathway signaling. However, the molecular mechanism(s) by which heparin interacts with cells to induce those responses has remained unclear. Previously characterized monoclonal antibodies that block heparin binding to vascular cells have been found to mimic heparin effects. In this study, those antibodies were employed to isolate a heparin binding protein. MALDI mass spectrometry data provide evidence that the protein isolated is transmembrane protein 184A (TMEM184A). Commercial antibodies against three separate regions of the TMEM184A human protein were used to identify the TMEM184A protein in vascular smooth muscle cells and endothelial cells. A GFP-TMEM184A construct was employed to determine colocalization with heparin after endocytosis. Knockdown of TMEM184A eliminated the physiological responses to heparin, including effects on ERK pathway activity and BrdU incorporation. Isolated GFP-TMEM184A binds heparin, and overexpression results in additional heparin uptake. Together, these data support the identification of TMEM184A as a heparin receptor in vascular cells.For more than 30 years, heparin has been known to specifically bind to cells in the vasculature and alter their physiology in addition to its well recognized function as an anticoagulant. Heparin binds to many proteins, including numerous growth factors, cytokines, coagulation factors, cell adhesion molecules, growth factor receptors, matrix glycoproteins, and others (for a review, see Ref. 1). In fact, heparin and the closely related glycosaminoglycan heparan sulfate (HS), 4 interact with more than 400 proteins (2). Heparin decreases endothelial cell (EC) inflammatory gene expression and slows vascular smooth muscle cell (VSMC) proliferation (reviewed in Ref. 3). Specifically, ECs bind and endocytose heparin (4, 5), which is followed by decreased inflammatory signaling through NF-B (6) and stress kinase activity (7,8). Heparin binding in VSMCs (9) results in decreases in growth factor-induced ERK signaling (10, 11), inhibition of downstream transcription factor activity (12-14), changes in cell cycle inhibitory factors (15), and decreased proliferation (10, 16).Reports of fluorescent heparin uptake into cells, where it modulated transcription factor function (17), and the requirements of HSPGs for basic growth factor delivery to the nucleus (18) indicate that receptor-mediated uptake of heparin or HS may also be critical for some heparin effects. Similarly, shed HSPG syndecan-1 can be taken up by cells and transported to the nucleus, where it alters histone acetylation (19). HS chains are required for uptake, and this uptake can be inhibited by exogenously added heparin. It is likely that the uptake of highly charged heparin and HS chains involves a receptor to manage transport across the membrane. Although many heparin-interacting proteins have been linked to specific functions, a receptor respon...
Published data provide strong evidence that heparin treatment of proliferating vascular smooth muscle cells results in decreased signaling through the ERK pathway and decreases in cell proliferation. In addition, these changes have been shown to be mimicked by antibodies that block heparin binding to the cell surface. Here we provide evidence that the activity of protein kinase G is required for these heparin effects. Specifically, a chemical inhibitor of protein kinase G, Rp-8-pCPT-cGMS, eliminates heparin and anti-heparin receptor antibody effects on bromodeoxyuridine incorporation into growth factor stimulated cells. In addition, protein kinase G inhibitors decrease heparin effects on ERK activity, phosphorylation of the transcription factor ELK-1, and heparin induced MKP-1 synthesis. Although transient, the levels of cGMP increase in heparin treated cells. Finally, knock down of protein kinase G also significantly decreases heparin effects in growth factor activated vascular smooth muscle cells. Together, these data indicate that heparin effects on vascular smooth muscle cell proliferation depend, at least in part, on signaling through protein kinase G.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.