Porcine reproductive and respiratory syndrome (PRRS) causes decreased reproductive performance in breeding animals and increased respiratory problems in growing animals, which result in significant economic losses in the swine industry. Vaccination has generally not been effective in the prevention of PRRS, partially because of the rapid mutation rate and evolution of the virus. The objective of the current study was to discover the genetic basis of host resistance or susceptibility to the PRRS virus through a genome-wide association study using data from the PRRS Host Genetics Consortium PRRS-CAP project. Three groups of approximately 190 commercial crossbred pigs from 1 breeding company were infected with PRRS virus between 18 and 28 d of age. Blood samples and BW were collected up to 42 d post infection (DPI). Pigs were genotyped with the Illumina Porcine 60k Beadchip. Whole-genome analysis focused on viremia at each day blood was collected and BW gains from 0 to 21 DPI (WG21) or 42 DPI (WG42). Viral load (VL) was quantified as area under the curve from 0 to 21 DPI. Heritabilities for WG42 and VL were moderate at 0.30 and litter accounted for an additional 14% of phenotypic variation. Genomic regions associated with VL were found on chromosomes 4 and X and on 1, 4, 7, and 17 for WG42. The 1-Mb region identified on chromosome 4 influenced both WG and VL, exhibited strong linkage disequilibrium, and explained 15.7% of the genetic variance for VL and 11.2% for WG42. Despite a genetic correlation of −0.46 between VL and WG42, genomic EBV for this region were favorably and nearly perfectly correlated. The favorable allele for the most significant SNP in this region had a frequency of 0.16 and estimated allele substitution effects were significant (P < 0.01) for each group when the SNP was fitted as a fixed covariate in a model that included random polygenic effects with overall estimates of −4.1 units for VL (phenotypic SD = 6.9) and 2.0 kg (phenotypic SD = 3 kg) for WG42. Candidate genes in this region on SSC4 include the interferon induced guanylate-binding protein gene family. In conclusion, host response to experimental PRRS virus challenge has a strong genetic component, and a QTL on chromosome 4 explains a substantial proportion of the genetic variance in the studied population. These results could have a major impact in the swine industry by enabling marker-assisted selection to reduce the impact of PRRS but need to be validated in additional populations. RightsWorks produced by employees of the U.S. Government as part of their official duties are not copyrighted within the U.S. The content of this document is not copyrighted. Key words: genetic parameters, genomic regions, porcine, reproductive and respiratory syndrome, swine ABSTRACT: Porcine reproductive and respiratory syndrome (PRRS) causes decreased reproductive performance in breeding animals and increased respiratory problems in growing animals, which result in significant economic losses in the swine industry. Vaccination has generally not...
In late 2005, sporadic cases of an acute onset disease of high mortality were observed in 10- to 16-week-old growing pigs among several swine herds of the United States. Tissues from the affected pigs in Kansas, Iowa, and North Carolina were examined, and porcine circovirus type 2 (PCV2) was detected consistently among these tissues. Phylogenetically, PCV2 can be divided into two major genotypic groups, PCV2-group 1 and PCV2-group 2. Whereas PCV2-group 1 isolates were detected in all the diseased animals, only two of the diseased animals harbored PCV2-group 2 isolates. This observation is important because PCV2-group 1 isolates had never been reported in the United States before (GenBank as of May 16, 2006), and they are closely related to the PCV2-group 1 isolates that have been described in Europe and Asia, previously. Our analysis revealed that each genotypic group contains a distinct stretch of nucleotide or amino acid sequence that may serve as a signature motif for PCV2-group 1 or PCV2-group 2 isolates.
The major structural proteins of porcine reproductive and respiratory syndrome virus (PRRSV) are derived from ORFs 5, 6, and 7. Western blots of sucrose gradient-purified virions and PRRSV-infected MARC-145 cells, probed with immune pig serum, showed the presence of an additional 10-kDa protein. Nucleotide sequence analysis of North American PRRSV isolate SDSU-23983 revealed a small ORF within ORF2, named ORF2b, which, when translated, produced a 73-amino-acid nonglycosylated protein. Recombinant 2b protein expressed by a baculovirus clone, AcVR2, comigrated with the 10-kDa virus-associated protein. The loss of 10-kDa protein immunoreactivity after absorption of immune sera with lysates from AcVR2-infected insect cells demonstrated that the 2b and 10-kDa proteins are immunologically similar. Immunoblots were also used for the detection of anti-2b activity in serum samples from experimentally infected adult pigs. Antibodies against PRRSV were apparent by 14 days postinfection, followed by anti-2b activity and serum neutralizing activity. The putative ORF2b start codon is only 6 nucleotides downstream of the adenine of the ORF2a start codon. The expression of ORF2a and 2b as enhanced green fluorescent fusion proteins showed that both proteins were translated; however, the ORF2b was preferentially expressed. These results suggest that the 2b protein is virion associated and the principal product of ORF2.
Infectious diseases are costly to the swine industry; porcine reproductive and respiratory syndrome (PRRS) is the most devastating. In earlier work, a quantitative trait locus associated with resistance/susceptibility to PRRS virus was identified on Sus scrofa chromosome 4 using approximately 560 experimentally infected animals from a commercial cross. The favorable genotype was associated with decreased virus load and increased weight gain (WG). The objective here was to validate and further characterize the association of the chromosome 4 region with PRRS resistance using data from two unrelated commercial crossbred populations. The validation populations consisted of two trials each of approximately 200 pigs sourced from different breeding companies that were infected with PRRS virus and followed for 42 days post-infection. Across all five trials, heritability estimates were 0.39 and 0.34 for viral load (VL; area under the curve of logtransformed viremia from 0 to 21 days post-infection) and WG to 42 days post-infection respectively. Effect estimates of SNP WUR10000125 in the chromosome 4 region were in the same directions and of similar magnitudes in the two new trials as had been observed in the first three trials. Across all five trials, the 1-Mb region on chromosome 4 explained 15 percent of genetic variance for VL and 11 percent for WG. The effect of the favorable minor allele at SNP WUR10000125 was dominant. Ordered genotypes for SNP WUR10000125 showed that the effect was present irrespective of whether the favorable allele was paternally or maternally inherited. These results demonstrate that selection for host response to PRRS virus infection could reduce the economic impact of PRRS. SummaryInfectious diseases are costly to the swine industry; porcine reproductive and respiratory syndrome (PRRS) is the most devastating. In earlier work, a quantitative trait locus associated with resistance/susceptibility to PRRS virus was identified on Sus scrofa chromosome 4 using approximately 560 experimentally infected animals from a commercial cross. The favorable genotype was associated with decreased virus load and increased weight gain (WG). The objective here was to validate and further characterize the association of the chromosome 4 region with PRRS resistance using data from two unrelated commercial crossbred populations. The validation populations consisted of two trials each of approximately 200 pigs sourced from different breeding companies that were infected with PRRS virus and followed for 42 days post-infection. Across all five trials, heritability estimates were 0.39 and 0.34 for viral load (VL; area under the curve of logtransformed viremia from 0 to 21 days post-infection) and WG to 42 days post-infection respectively. Effect estimates of SNP WUR10000125 in the chromosome 4 region were in the same directions and of similar magnitudes in the two new trials as had been observed in the first three trials. Across all five trials, the 1-Mb region on chromosome 4 explained 15 percent of genetic...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.