[1] A comprehensive intercomparison of historical wind speed trends over the contiguous United States is presented based on two observational data sets, four reanalysis data sets, and output from two regional climate models (RCMs). This research thus contributes to detection, quantification, and attribution of temporal trends in wind speeds within the historical/contemporary climate and provides an evaluation of the RCMs being used to develop future wind speed scenarios. Under the assumption that changes in wind climates are partly driven by variability and evolution of the global climate system, such changes should be manifest in direct observations, reanalysis products, and RCMs. However, there are substantial differences in temporal trends derived from observational wind speed data, reanalysis products, and RCMs. The two observational data sets both exhibit an overwhelming dominance of trends toward declining values of the 50th and 90th percentile and annual mean wind speeds, which is also the case for simulations conducted using MM5 with NCEP-2 boundary conditions. However, converse trends are seen in output from the North American Regional Reanalysis, other global reanalyses (NCEP-1 and ERA-40), and the Regional Spectral Model. Equally, the relationship between changing annual mean wind speed and interannual variability is not consistent among the different data sets. NCEP-1 and NARR exhibit some tendency toward declining (increasing) annual mean wind speeds being associated with decreased (increased) interannual variability, but this is not the case for the other data sets considered. Possible causes of the differences in temporal trends from the eight data sources analyzed are provided. Motivation and Objectives[2] Wind speed time series have been subject to far fewer trend analyses than temperature and precipitation records [Gower, 2002;Keimig and Bradley, 2002;McAvaney et al., 2001;McVicar et al., 2008; Tomasin, 1999, 2003;Pryor and Barthelmie, 2003;Tuller, 2004;Brazdil et al., 2009], in part because of data homogeneity issues [Thomas et al., 2008;Tuller, 2004;DeGaetano, 1998]. However, understanding how evolution of the global climate system has been manifest as changes in near-surface wind regimes in the past and how near-surface wind speed regimes might alter in the future is of great relevance to the insurance industry [Changnon et al., 1999;Thornes, 1991], the construction and maritime industries [Ambrose and Vergun, 1997;Caires and Sterl, 2005;Caires et al., 2006], surface energy balance estimation [Rayner, 2007], the community charged with mitigating coastal erosion [Bijl, 1997;Viles and Goudie, 2003], the agricultural industry [O'Neal et al., 2005], forest and infrastructure protection communities [Jungo et al., 2002], and the burgeoning wind energy industry [Pryor et al., 2006b]. With respect to the latter, it is worth noting that during 2005-2008 over 18,000 MW of wind energy developments came online in the continental United States, increasing installed capacity to over 25 GW (AWEA wind ene...
[1] In the last 25 years of the 20th century most major land regions experienced a summer warming trend, but the central U.S. cooled by 0.2 -0.8 K. In contrast most climate projections using GCMs show warming for all continental interiors including North America. We examined this discrepancy by using a regional climate model and found a circulation-precipitation coupling under enhanced greenhouse gas concentrations that occurs on scales too small for current GCMs to resolve well. Results show a local minimum of warming in the central U.S. (a ''warming hole'') associated with changes in low-level circulations that lead to replenishment of seasonally depleted soil moisture, thereby increasing late-summer evapotranspiration and suppressing daytime maximum temperatures. These regional-scale feedback processes may partly explain the observed late 20th century temperature trend in the central U.S. and potentially could reduce the magnitude of future greenhouse warming in the region.
Significant spatial heterogeneities of daytime surface sensible heat flux are common over land within mesoscale domains. Thermally induced circulations, similar to the sea/lake breeze [termed nonclassical mesoscale circulations (NCMCs)], are anticipated in these situations. Growing research interest in NCMCs has developed in the recent decade. In this article, general quantifications of NCMC characteristics are sun/eyed based on modeling and observational studies, along with further elaborations on specific NCMCs. The numerical modeling studies have indicated NCMCs with intensity comparable to the sea breeze in the ideal situations of sharp contrast between extended wet soil or crop and adjacent dry land areas. Similar results were obtained when contrasts of cloud with clear sky and snow with snow-free areas were considered. For less ideal contrasts, as well as for thermal contrasts generated by some other types of forcing, weaker NCMCs were simulated. The limited observational studies have suggested that, for some potential NCMC situations, noticeable horizontal thermal gradients are produced within the lower atmosphere. In general, however, pronounced NCMC flows have not been indicated with great certainty. In many of the potential NCMC situations, the small sizes of the areas in which sensible heat flux is modified compared with the surrounding areas suggest reduced intensity of circulations in the real world, particularly in the presence of an opposing background flow. Additionally, nonuniformity of the surface sensible heat fluxes in one or both of the contrasting surfaces is likely to be an important factor in reducing the real-world intensity of NCMCs. It is concluded that emphasis on observations is essential for further progress in quantification of real-world NCMCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.