The synthesis, spectroscopic properties, and electrochemistry of six different alkyl- and aryl-substituted Co(III) corroles are presented. The investigated compounds contain methyl, ethyl, phenyl, or substituted phenyl groups at the eight beta-positions of the corrole macrocycle and four derivatives also contain a phenyl group at the 10-meso position of the macrocycle. Each cobalt corrole undergoes four reversible oxidations in CH(2)Cl(2) containing 0.1 M tetra-n-butylammonium perchlorate and exists as a dimer in its singly and doubly oxidized forms. The difference in potential between the first two oxidations is associated with the degree of interaction between the two corrole units of the dimer and ranges from an upper value of 0.62 V, in the case of (Me(6)Et(2)Cor)Co, to a lower value of about 0.17 V, in the case of four compounds which have a phenyl group located at the 10-meso position of the macrocycle. These Co(III) corroles strongly coordinate two pyridine molecules or one carbon monoxide molecule in CH(2)Cl(2) media, and ligand binding constants were evaluated using spectroscopic and electrochemical methods. The structure of (Me(4)Ph(5)Cor)Co(py)(2) was also determined by X-ray diffraction. Crystal data: (Me(4)Ph(5)Cor)Co(py)(2).3CH(2)Cl(2).H(2)O, orthorhombic, a = 19.5690(4) A, b = 17.1070(6) A, c = 15.9160(6) A, V = 5328.2(5) A(3), space group Pna2(1), Z = 2, 35 460 observations, R(F) = 0.069.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.