While buprenorphine's analgesic effect increased significantly, respiratory depression was similar in magnitude and timing for the two doses tested. We conclude that over the dose range tested buprenorphine displays ceiling in respiratory effect but none in analgesic effect.
The objective of this study was to characterize the pharmacokinetic/pharmacodynamic (PK/PD) relationship of buprenorphine and fentanyl for the respiratory depressant effect in healthy volunteers. Data on the time course of the ventilatory response at a fixed P(ET)CO(2) of 50 mm Hg and P(ET)O(2) of 110 mm Hg following intravenous administration of buprenorphine and fentanyl were obtained from two phase I studies (50 volunteers received buprenorphine: 0.05-0.6 mg/70 kg and 24 volunteers received fentanyl: 0.075-0.5 mg/70 kg). The PK/PD correlations were analyzed using nonlinear mixed effects modeling. A two- and three-compartment pharmacokinetic model characterized the time course of fentanyl and buprenorphine concentration, respectively. Three structurally different PK/PD models were evaluated for their appropriateness to describe the time course of respiratory depression: (1) a biophase distribution model with a fractional sigmoid E(max) pharmacodynamic model, (2) a receptor association/dissociation model with a linear transduction function, and (3) a combined biophase distribution-receptor association/dissociation model with a linear transduction function. The results show that for fentanyl hysteresis is entirely determined by the biophase distribution kinetics, whereas for buprenorphine hysteresis is caused by a combination of biophase distribution kinetics and receptor association/dissociation kinetics. The half-time values of biophase equilibration (t(1/2, k(eo))) were 16.4 and 75.3 min for fentanyl and buprenorphine, respectively. In addition, for buprenorphine, the value of k(on) was 0.246 ml/ng/min and the value of k(off) was 0.0102 min(-1). The concentration-effect relationship of buprenorphine was characterized by a ceiling effect at higher concentrations (intrinsic activity alpha=0.56, 95% confidence interval (CI): 0.50-0.62), whereas fentanyl displayed full respiratory depressant effect (alpha=0.91, 95% CI: 0.19-1.62).
A cumulative dose of 0.3 mg/kg M6G, given over 1 h, produces long-term analgesia greater than that observed with placebo, with equal dynamics (potency and speed of onset-offset) in men and women. Possible causes for the great intersubject response variability, such as genetic polymorphism of the micro-opioid receptor and placebo-related phenomena, are discussed. The predictive pharmacokinetic-pharmacodynamic model was applied successfully and was used to estimate M6G analgesia after morphine in patients with normal and impaired renal function.
These data show dose-dependent effects on respiration at relatively low concentrations of propofol and remifentanil. When combined, their effect on respiration is strikingly synergistic, resulting in severe respiratory depression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.