Hepatoblastoma, the most common pediatric liver cancer, is tightly linked to excessive Wnt/beta-catenin signaling. Here, we used microarray analysis to identify two tumor subclasses resembling distinct phases of liver development and a discriminating 16-gene signature. beta-catenin activated different transcriptional programs in the two tumor types, with distinctive expression of hepatic stem/progenitor markers in immature tumors. This highly proliferating subclass was typified by gains of chromosomes 8q and 2p and upregulated Myc signaling. Myc-induced hepatoblastoma-like tumors in mice strikingly resembled the human immature subtype, and Myc downregulation in hepatoblastoma cells impaired tumorigenesis in vivo. Remarkably, the 16-gene signature discriminated invasive and metastatic hepatoblastomas and predicted prognosis with high accuracy.
Congenital nephrotic syndrome (CNS) is clinically and genetically heterogeneous, with mutations in WT1, NPHS1 and NPHS2 accounting for part of cases. We recently delineated a new autosomal recessive entity comprising CNS with diffuse mesangial sclerosis and distinct ocular anomalies with microcoria as the leading clinical feature (Pierson syndrome). On the basis of homozygosity mapping to markers on chromosome 3p14-p22, we identified homozygous or compound heterozygous mutations of LAMB2 in patients from five unrelated families. Most disease-associated alleles were truncating mutations. Using immunohistochemistry and western blotting we could demonstrate that the respective LAMB2 mutations lead to loss of laminin beta2 expression in kidney and other tissues studied. Laminin beta2 is known to be abundantly expressed in the glomerular basement membrane (GBM) where it is thought to play a key role in anchoring as well as differentiation of podocyte foot processes. Lamb2 knockout mice were reported to exhibit congenital nephrosis in association with anomalies of retina and neuromuscular junctions. By studying ocular laminin beta2 expression in unaffected controls, we detected the strongest expression in the intraocular muscles corresponding well to the characteristic hypoplasia of ciliary and pupillary muscles observed in patients. Moreover, we present first clinical evidence of severe impairment of vision and neurodevelopment due to LAMB2 defects. Our current data suggest that human laminin beta2 deficiency is consistently and specifically associated with this particular oculorenal syndrome. In addition, components of the molecular interface between GBM and podocyte foot processes come in the focus as potential candidates for isolated and syndromic CNS.
A mechanism decreasing oxidative metabolism during normal cell division and growth is expected to direct substrates toward biosyntheses rather than toward complete oxidation to CO(2). Hence, any event decreasing oxidative phosphorylations (OXPHOS) could provide a proliferating advantage to a transformed or tumor cell in an oxidative tissue. To test this hypothesis, we studied mitochondrial enzymes, DNA and OXPHOS protein content in three types of renal tumors from 25 patients. Renal cell carcinomas (RCCs) of clear cell type (CCRCCs) originate from the proximal tubule and are most aggressive. Chromophilic RCCs, from similar proximal origin, are less aggressive. The benign renal oncocytomas originate from collecting duct cells. Mitochondrial enzyme and DNA contents in all tumor types or grades differed significantly from normal tissue. Mitochondrial impairment increased from the less aggressive to the most aggressive RCCs, and correlated with a considerably decreased content of OXPHOS complexes (complexes II, III, and IV of the respiratory chain, and ATPase/ATP synthase) rather than to the mitochondrial content (citrate synthase and mitochondrial (mt)DNA). In benign oncocytoma, some mitochondrial parameters (mtDNA, citrate synthase, and complex IV) were increased 4- to 7-fold, and some were slightly increased by a factor of 2 (complex V) or close to normal (complexes II and III). A low content of complex V protein was found in all CCRCC and chromophilic tumors studied. However F(1)-ATPase activity was not consistently decreased and its impairment was associated with increased aggressiveness in CCRCCs. Immunodetection of free F(1)-sector of complex V demonstrated a disturbed assembly/stability of complex V in several CCRCC and chromophilic tumors. All results are in agreement with the hypothesis that a decreased OXPHOS capacity favors faster growth or increased invasiveness.
Autosomal recessive renal tubular dysgenesis is a severe disorder of renal tubular development characterized by persistent fetal anuria and perinatal death, probably due to pulmonary hypoplasia from early-onset oligohydramnios (Potter phenotype). Absence or paucity of differentiated proximal tubules is the histopathological hallmark of the disease and may be associated with skull ossification defects. We studied 11 individuals with renal tubular dysgenesis, belonging to nine families, and found that they had homozygous or compound heterozygous mutations in the genes encoding renin, angiotensinogen, angiotensin converting enzyme or angiotensin II receptor type 1. We propose that renal lesions and early anuria result from chronic low perfusion pressure of the fetal kidney, a consequence of renin-angiotensin system inactivity. This is the first identification to our knowledge of a renal mendelian disorder linked to genetic defects in the renin-angiotensin system, highlighting the crucial role of the renin-angiotensin system in human kidney development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.