The mechanisms that maintain the stability of chromosome ends have broad impact on genome integrity in all eukaryotes. Budding yeast is a premier organism for telomere studies. Many fundamental concepts of telomere and telomerase function were first established in yeast and then extended to other organisms. We present a comprehensive review of yeast telomere biology that covers capping, replication, recombination, and transcription. We think of it as yeast telomeres—soup to nuts.
During telomere replication in yeast, chromosome ends acquire an S-phase-specific overhang of the guanosine-rich strand. Here it is shown that in cells lacking Ku, a heterodimeric protein involved in nonhomologous DNA end joining, these overhangs are present throughout the cell cycle. In vivo cross-linking experiments demonstrated that Ku is bound to telomeric DNA. These results show that Ku plays a direct role in establishing a normal DNA end structure on yeast chromosomes, conceivably by functioning as a terminus-binding factor. Because Ku-mediated DNA end joining involving telomeres would result in chromosome instability, our data also suggest that Ku has a distinct function when bound to telomeres.
Telomeric DNA of mammalian chromosomes consists of several kilobase-pairs of tandemly repeated sequences with a terminal 3' overhang in single-stranded form. Maintaining the integrity of these repeats is essential for cell survival; telomere attrition is associated with chromosome instability and cell senescence, whereas stabilization of telomere length correlates with the immortalization of somatic cells. Telomere elongation is carried out by telomerase, an RNA-dependent DNA polymerase which adds single-stranded TAGGGT repeats to the 3' ends of chromosomes. While proteins that associate with single-stranded telomeric repeats can influence tract lengths in yeast, equivalent factors have not yet been identified in vertebrates. Here, it is shown that the heterogeneous nuclear ribonucleoprotein A1 participates in telomere biogenesis. A mouse cell line deficient in A1 expression harbours telomeres that are shorter than those of a related cell line expressing normal levels of A1. Restoring A1 expression in A1-deficient cells increases telomere length. Telomere elongation is also observed upon introduction of exogenous UP1, the amino-terminal fragment of A1. While both A1 and UP1 bind to vertebrate single-stranded telomeric repeats directly and with specificity in vitro, only UP1 can recover telomerase activity from a cell lysate. These findings establish A1/UP1 as the first single-stranded DNA binding protein involved in mammalian telomere biogenesis and suggest possible mechanisms by which UP1 may modulate telomere length.
The predicted secondary structure of the TLC1 RNA of S. cerevisiae reveals a distinct folding pattern featuring well-separated but conserved functional elements. The predicted structure now allows for a detailed and rationally designed study to the structure-function relationships within the telomerase RNP-complex in a genetically tractable system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.