Recent studies have demonstrated the potential of OCTA retinal imaging for the discovery of biomarkers of vascular disease of the eye and other organs. Furthermore, advances in deep learning have made it possible to train algorithms for the automated detection of such biomarkers. However, two key limitations of this approach are the need for large numbers of labeled images to train the algorithms, which are often not met by the typical single-centre prospective studies in the literature, and the lack of interpretability of the features learned during training. In the current study, we developed a network analysis framework to characterise retinal vasculature where geometric and topological information are exploited to increase the performance of classifiers trained on tens of OCTA images. We demonstrate our approach in two different diseases with a retinal vascular footprint: diabetic retinopathy (DR) and chronic kidney disease (CKD). Our approach enables the discovery of previously unreported retinal vascular morphological differences in DR and CKD, and demonstrate the potential of OCTA for automated disease assessment.
OCTA imaging is an emerging modality for the discovery of retinal biomarkers in systemic disease. Several studies have already shown the potential of deep learning algorithms in the medical domain. However, they generally require large amount of manually graded images which may not always be available. In our study, we aim to investigate whether transfer learning can help in identifying patient status from a relatively small dataset. Additionally, we explore if data augmentation may help in improving our classification accuracy. Finally, for the first time, we propose a validation of our model on OCTA images acquired with a different device. OCTA scans from three different groups of participants were analysed: diabetic with and without retinopathy (DR and NoDR, respectively) and healthy subjects. We used the convolutional neural network architecture VGG16 and achieved 83.29% accuracy when classifying DR, NoDR and Controls. Our results demonstrate how transfer learning enables fairly accurate OCTA scan classification and augmentation based on geometric transformations helps in improving the classification accuracy further. Finally, we show how our model maintains consistent performance across OCTA imaging devices, without any re-training.
<p style='text-indent:20px;'>In this paper, we investigate the use of the Euler characteristic for the topological data analysis, particularly over higher dimensional parameter spaces. The Euler characteristic is a classical, well-understood topological invariant that has appeared in numerous applications, primarily in the context of random fields. The goal of this paper, is to present the extension of using the Euler characteristic in higher dimensional parameter spaces. The topological data analysis of higher dimensional parameter spaces using stronger invariants such as homology, has and continues to be the subject of intense research. However, as important theoretical and computational obstacles remain, the use of the Euler characteristic represents an important intermediary step toward multi-parameter topological data analysis. We show the usefulness of the techniques using generated examples as well as a real world dataset of detecting diabetic retinopathy in retinal images.</p>
We study the use of the Euler characteristic for multiparameter topological data analysis. Euler characteristic is a classical, well-understood topological invariant that has appeared in numerous applications, including in the context of random fields. The goal of this paper is to present the extension of using the Euler characteristic in higher-dimensional parameter spaces. While topological data analysis of higher-dimensional parameter spaces using stronger invariants such as homology continues to be the subject of intense research, Euler characteristic is more manageable theoretically and computationally, and this analysis can be seen as an important intermediary step in multiparameter topological data analysis. We show the usefulness of the techniques using artificially generated examples, and a real-world application of detecting diabetic retinopathy in retinal images.
Alzheimer's disease is a debilitating disease in the elderly, and is an increasing burden to the society due to an aging population. In this paper, we apply topological data analysis to structural MRI scans of the brain, and show that topological invariants make accurate predictors for Alzheimer's. Using the construct of Betti Curves, we first show that topology is a good predictor of Age. Then we develop an approach to factor out the topological signature of age from Betti curves, and thus obtain accurate detection of Alzheimer's disease. Experimental results show that topological features used with standard classifiers perform comparably to recently developed convolutional neural networks. These results imply that topology is a major aspect of structural changes due to aging and Alzheimer's. We expect this relation will generate further insights for both early detection and better understanding of the disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.