BackgroundDNA methylation is an epigenetic mechanism for regulating the transcription of many genes and has been linked to the development of various diseases. A promising gene to investigate is methylenetetrahydrofolate reductase (MTHFR), since the enzyme methylenetetrahydrofolate reductase (MTHFR) promotes methyl radical synthesis in the homocysteine cycle and can provide methyl groups for DNA methylation. In addition, several studies have correlated gene polymorphisms of this enzyme with a greater risk of diabetes, but little is known regarding the relationship between epigenetic changes in this gene and diabetes and its complications. The aim of this study was to investigate the relationship between methylation profile in the MTHFR gene promoter and biochemical, inflammatory and oxidative stress markers in individuals with type 2 diabetes (T2DM) who have been diagnosed for 5–10 years with or without diabetic retinopathy (DR) and nephropathy (DN).MethodsSpecific PCR for methylation (MSP) was used to analyze MTHFR methylation profile in leucocytes DNA. Biochemical markers (glycemia, glycated hemoglobin, total cholesterol, LDL, HDL, triglycerides, serum creatinine), inflammatory markers (C-reactive protein and alpha-1 acid glycoprotein) and oxidative stress (total antioxidant and malonaldehyde) were determined in peripheric blood samples and microalbuminuria in 24 h urine samples. The X2 and Mann–Whitney statistical tests were performed and p < 0.05 were considered significant.ResultsThe hypermethylated profile was most frequently observed in individuals with retinopathy (p < 0.01) and was associated with higher total cholesterol and LDL levels (p = 0.0046, 0.0267, respectively). Individuals with DN and hypermethylated profiles had higher levels of alpha-1 acid glycoprotein (p = 0.0080) and total antioxidant capacity (p = 0.0169) compared to subjects without complications.ConclusionsHypermethylation in the promoter of the MTHFR gene is associated with the occurrence of DR and with biochemical, inflammatory and oxidative stress parameters in the context of chronic complications
BackgroundStudies of genes that play an important role in the development of obesity are needed, especially studies focusing on genes that regulate food intake and affect nutrient metabolism. For example, the beta-3 adrenergic receptor (ADRB3) responds to noradrenaline and mediates lipolysis in adipocytes.MethodsThis was a controlled intervention study involving 40 overweight and obese adult women in which food intake, anthropometric measurements, biochemical analyses, and methylation levels of the ADRB3 gene were evaluated before and after intervention. The individuals were randomized into four groups: group 1 (G1) received 300 g of vegetables and legumes containing on average 191 μg/day of folate and 1 hazelnut oil capsule; group 2 (G2) received 300 g of vegetables and legumes containing on average 191 μg/day of folate and 1 placebo capsule; group 3 (G3) received 300 g of vegetables and legumes containing on average 90 μg/day of folate and 1 hazelnut oil capsule; and individuals in group 4 (G4) were only followed-up and maintained their regular dietary habits. Statistical analysis was performed using analysis of variance (ANOVA), Student’s t test and simple regression, using STATA 13 software.ResultsIn the total sample, after the intervention, the women classified as overweight and obese did not present weight loss, and there was a reduction in the methylation levels of the ADRB3 gene and malondialdehyde, as well as an increase in high-density lipoprotein cholesterol and total antioxidant capacity.ConclusionsThe beneficial effect of the intake of a hazelnut capsule on the methylation levels of the ADRB3 gene was demonstrated for the first time.Trial registration ClinicalTrials.gov, NCT 02846025
BackgroundPolymorphisms in the gene encoding methylenetetrahydrofolate reductase (MTHFR) have been investigated as risk factors for microvascular complications of diabetes; however, simultaneous analysis of these polymorphisms and the methylation pattern of the gene has never been conducted. The objective of the present study was to evaluate the simultaneous relationship between MTHFR methylation and MTHFR C6TT7 and A1298C polymorphisms with metabolic, inflammatory and oxidative stress parameters related to microvascular complications, diabetic retinopathy (DR) and diabetic nephropathy (DN) in diabetic patients.MethodsA total of 107 patients who were diagnosed in the previous 5 to 10 years were recruited and divided into groups with complications (DR and/or DN) or without complications. Methylation analysis of the gene promoter was conducted using the MSP technique, and analysis of the A1298C and C677T polymorphisms was conducted using the restriction fragment length polymorphism (RFLP) assay. Microalbuminuria was determined using urine samples, and other analytes of interest were determined in blood samples using commercial kits. The Mann–Whitney and Chi square statistical tests were used with significance considered at p < 0.05.ResultsSubjects with a hypermethylated profile and the 1298AA genotype showed the highest levels of blood glucose (p = 0.03), total cholesterol (p = 0.0001) and LDL cholesterol (p = 0.0006). The same profile was associated with higher levels of HbA1c (p = 0.025), glycemia (p = 0.04) and total cholesterol (0.004) in the control group and total cholesterol (p = 0.005) and LDL cholesterol (p = 0.002) in the complications group. Serum creatinine was higher in subjects in the hypermethylated group with the genotype 677CC only in the control group (p = 0.0020). The methylated profile in presence of 677CC + 1298AA and the 677CT/TT +1298AA haplotypes showed higher levels of total cholesterol (p = 0.0024; 0.0031) and LDL cholesterol (p = 0.0060; 0.0125) than 1298AC/CC carriers. The fasting glycemia was higher in hypermethylated profile in the presence of 677CC/1298AA haplotype (p = 0.0077).ConclusionThe hypermethylated methylation profile associated with the 1298AA genotype appeared to be connected to higher values of glycemia, total cholesterol and LDL cholesterol.
Methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism associated with body fat accumulation could possibly trigger an inflammatory process by elevating homocysteine levels and increasing cytokine production, causing several diseases. This study aimed to evaluate the effects of food intervention, and not folate supplements, on the levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β) in overweight and obese women with the MTHFR C677T polymorphism. A randomized, double-blind eight-week clinical trial of 48 overweight and obese women was conducted. Participants were randomly assigned into two groups. They received 300 g of vegetables daily for eight weeks containing different doses of folate: 95 µg/day for Group 1 and 191 µg/day for Group 2. MTHFR C677T polymorphism genotyping was assessed by digestion with HinfI enzyme and on 12% polyacrylamide gels. Anthropometric measurements, 24-h dietary recall, and biochemical analysis (blood folic acid, vitamin B12, homocysteine (Hcy), TNF-α, IL-1β, and IL-6) were determined at the beginning and end of the study. Group 2 had a significant increase in folate intake (p < 0.001) and plasma folic acid (p < 0.05) for individuals with the cytosine–cytosine (CC), cytosine–thymine (CT), and thymine–thymine (TT) genotypes. However, only individuals with the TT genotype presented reduced levels of Hcy, TNF-α, IL-6, and IL-1β (p < 0.001). Group 1 showed significant differences in folate consumption (p < 0.001) and folic acid levels (p < 0.05) for individuals with the CT and TT genotypes. Food intervention with folate from vegetables increased folic acid levels and reduced interleukins, TNF-α, and Hcy levels, mainly for individuals with the TT genotype.
The study demonstrated the beneficial effect of folate intake in terms of a TAC elevation for the CC and TT genotypes of the MTHFR C677T polymorphism, an increase in folic acid levels for all genotypes, and a reduction in the Hcy levels for the TT genotype in response to an intervention consisting of an intake of 191 µg/d of folate supplied by vegetables.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.