Eosinophils are effector cells that have an important role in the pathogenesis of allergic disease. Defective removal of these cells likely leads to chronic inflammatory diseases such as asthma. Thus, there is great interest in understanding the mechanisms responsible for the elimination of eosinophils from inflammatory sites. Previous studies have demonstrated a role for certain mediators and molecular pathways responsible for the survival and death of leukocytes at sites of inflammation. Reactive oxygen species have been described as proinflammatory mediators but their role in the resolution phase of inflammation is poorly understood. The aim of this study was to investigate the effect of reactive oxygen species in the resolution of allergic inflammatory responses. An eosinophilic cell line (Eol-1) was treated with hydrogen peroxide and apoptosis was measured. Allergic inflammation was induced in ovalbumin sensitized and challenged mouse models and reactive oxygen species were administered at the peak of inflammatory cell infiltrate. Inflammatory cell numbers, cytokine and chemokine levels, mucus production, inflammatory cell apoptosis and peribronchiolar matrix deposition was quantified in the lungs. Resistance and elastance were measured at baseline and after aerosolized methacholine. Hydrogen peroxide accelerates resolution of airway inflammation by induction of caspase-dependent apoptosis of eosinophils and decrease remodeling, mucus deposition, inflammatory cytokine production and airway hyperreactivity. Moreover, the inhibition of reactive oxygen species production by apocynin or in gp91phox−/− mice prolonged the inflammatory response. Hydrogen peroxide induces Eol-1 apoptosis in vitro and enhances the resolution of inflammation and improves lung function in vivo by inducing caspase-dependent apoptosis of eosinophils.
Inflammation is a physiological response of the immune system to injury or infection but may become chronic. In general, inflammation is self-limiting and resolves by activating a termination program named resolution of inflammation. It has been argued that unresolved inflammation may be the basis of a variety of chronic inflammatory diseases. Resolution of inflammation is an active process that is fine-tuned by the production of proresolving mediators and the shutdown of intracellular signaling molecules associated with cytokine production and leukocyte survival. Apoptosis of leukocytes (especially granulocytes) is a key element in the resolution of inflammation and several signaling molecules are thought to be involved in this process. Here, we explore key signaling molecules and some mediators that are crucial regulators of leukocyte survival in vivo and that may be targeted for therapeutic purposes in the context of chronic inflammatory diseases.
Uncontrolled inflammation leads to tissue damage and it is central for the development of chronic inflammatory diseases and autoimmunity. An acute inflammatory response is finely regulated by the action of anti-inflammatory and pro-resolutive mediators, culminating in the resolution of inflammation and restoration of homeostasis. There are few studies investigating intracellular signaling pathways associated with the resolution of inflammation. Here, we investigate the role of Rho-associated kinase (ROCK), a serine/threonine kinase, in a model of self-resolving neutrophilic inflammatory. We show that ROCK activity, evaluated by P-MYPT-1 kinetics, was higher during the peak of lipopolysaccharide-induced neutrophil influx in the pleural cavity of mice. ROCK inhibition by treatment with Y-27632 decreased the accumulation of neutrophils in the pleural cavity and was associated with an increase in apoptotic events and efferocytosis, as evaluated by an in vivo assay. In a model of gout, treatment with Y-27632 reduced neutrophil accumulation, IL-1β levels and hypernociception in the joint. These were associated with reduced MYPT and IκBα phosphorylation levels and increased apoptosis. Finally, inhibition of ROCK activity also induced apoptosis in human neutrophils and destabilized cytoskeleton, extending the observed effects to human cells. Taken together, these data show that inhibition of the ROCK pathway might represent a potential therapeutic target for neutrophilic inflammatory diseases.
Sphingosine-1-phosphate (S1P) is an important sphingolipid derived from plasma membrane and has a known role in productive phase of inflammation, but its role in neutrophil survival and resolution phase of inflammation is unknown. Here, we investigated the effects of inhibition of S1P receptors and the blockade of S1P synthesis in BALB/c mice and human neutrophils. S1P and S1PR1-3 receptors expression were increased in cells from the pleural cavity stimulated with LPS. Using different antagonists of S1PRs and inhibitors of different steps of the metabolic pathway of S1P production, we show that S1P and its receptors are involved in regulating neutrophil survival and resolution of inflammation in the pleural cavity. Given the role of the S1P-S1PR axis in resolution of inflammation, we sought to identify whether blockade at different levels of the sphingosine-1-phosphate synthesis pathway could affect neutrophil survival in vitro. Inhibitors of the S1P pathway were also able to induce human neutrophil apoptosis. In addition, blockade of S1P synthesis or its receptor facilitated the efferocytosis of apoptotic neutrophil. Taken together, our data demonstrate a fundamental role for S1P in regulating the outcome of inflammatory responses, and position S1P-S1PR axis as a potential target for treatment of neutrophilic inflammation.
Rezende et al. report that the transplant of 5-lipoxygenase (5-LO)−deficient leukocytes protects mice from GVHD. Treatment with the 5-LO inhibitor zileuton or a LTB4 antagonist at the initial phase of the transplant achieves similar protective effects. 5-LO is a crucial contributor to tissue damage in GVHD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.