The stochastic differential equation (SDE) has been used to model various phenomena and investigate their properties. Conditional moments of stochastic processes can be used to price financial derivatives whose payoffs depend on conditional moments of underlying assets. In general, the transition probability density function (PDF) of a stochastic process is often unavailable in closed form. Thus, the conditional moments, which can be directly computed by applying the transition PDFs, may be unavailable in closed form. In this work, we studied an inhomogeneous nonlinear drift constant elasticity of variance (IND-CEV) process, which is a class of diffusions that have time-dependent parameter functions; therefore, their sample paths are asymmetric. The closed-form formulas for conditional moments of the IND-CEV process were derived without having a condition on eigenfunctions or the transition PDF. The analytical results were examined through Monte Carlo simulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.