Histological and molecular analysis of fracture healing in normal and diabetic animals showed significantly enhanced removal of cartilage in diabetic animals. Increased cartilage turnover was associated with elevated osteoclast numbers, a higher expression of genes that promote osteoclastogenesis, and diminished primary bone formation.Introduction: Diminished bone formation, an increased incidence of nonunions, and delayed fracture healing have been observed in animal models and in patients with diabetes. Fracture healing is characterized by the formation of a stabilizing callus in which cartilage is formed and then resorbed and replaced by bone. To gain insight into how diabetes affects fracture healing, studies were carried out focusing on the impact of diabetes on the transition from cartilage to bone. Materials and Methods: A low-dose treatment protocol of streptozotocin in CD-1 mice was used to induce a type 1 diabetic condition. After mice were hyperglycemic for 3 weeks, controlled closed simple transverse fractures of the tibia were induced and fixed by intramedullary pins. Histomorphometric analysis of the tibias obtained 12, 16, and 22 days after fracture was performed across the fracture callus at 0.5 mm proximal and distal increments using computer-assisted image analysis. Another group of 16-day samples were examined by CT. RNA was isolated from a separate set of animals, and the expression of genes that reflect the formation and removal of cartilage and bone was measured by real-time PCR. Results: Molecular analysis of collagen types II and X mRNA expression showed that cartilage formation was the same during the initial period of callus formation. Histomorphometric analysis of day 12 fracture calluses showed that callus size and cartilage area were also similar in normoglycemic and diabetic mice. In contrast, on day 16, callus size, cartilage tissue, and new bone area were 2.0-, 4.4-, and 1.5-fold larger, respectively, in the normoglycemic compared with the diabetic group (p < 0.05). Analysis of CT images indicated that the bone volume in the normoglycemic animals was 38% larger than in diabetic animals. There were 78% more osteoclasts in the diabetic group compared with the normoglycemic group (p < 0.05) on day 16, consistent with the reduction in cartilage. Real-time PCR showed significantly elevated levels of mRNA expression for TNF-␣, macrophage-colony stimulating factor, RANKL, and vascular endothelial growth factor-A in the diabetic group. Similarly, the mRNA encoding ADAMTS 4 and 5, major aggrecanases that degrade cartilage, was also elevated in diabetic animals. Conclusions: These results suggest that impaired fracture healing in diabetes is characterized by increased rates of cartilage resorption. This premature loss of cartilage leads to a reduction in callus size and contributes to decreased bone formation and mechanical strength frequently reported in diabetic fracture healing.
Diabetes mellitus is a metabolic disorder that leads to the development of a number of complications. The etiology of each diabetic complication is undoubtedly multifactorial. We will focus on one potential component that may be common in many diabetic complications, dysregulation of innate immunity associated with an increased inflammatory response. High glucose levels lead to shunting through the polyol pathway, an increase in diacylglycerol which activates protein kinase C, an increase in the release of electrons that react with oxygen molecules to form superoxides, and the non-enzymatic glycosylation of proteins that result in greater formation of advanced glycation end products. Each of these can lead to aberrant cell signalling that affects innate immunity for example, by activating the MAP kinase pathway or inducing activation of transcription factors such as NF-kappaB. This may be a common feature of several complications including periodontal disease, atherosclerosis, nephropathy, impaired healing and retinopathy. These complications are frequently associated with increased expression of inflammatory cytokines such as TNF-alpha, IL-1beta and IL-6 and enhanced generation of reactive oxygen species. Cause and effect relationship between dysregulation of key components of innate immunity and diabetic complications in many instances have been demonstrated with the use of cytokine blockers and antioxidants.
(KJJ) S U M M A R Y Rat and mouse femur and tibia fracture calluses were collected over various time increments of healing. Serial sections were produced at spatial segments across the fracture callus. Standard histological methods and in situ hybridization to col1a1 and col2a1 mRNAs were used to define areas of cartilage and bone formation as well as tissue areas undergoing remodeling. Computer-assisted reconstructions of histological sections were used to generate three-dimensional images of the spatial morphogenesis of the fracture calluses. Endochondral bone formation occurred in an asymmetrical manner in both the femur and tibia, with cartilage tissues seen primarily proximal or distal to the fractures in the respective calluses of these bones. Remodeling of the calcified cartilage proceeded from the edges of the callus inward toward the fracture producing an inner-supporting trabecular structure over which a thin outer cortical shell forms. These data suggest that the specific developmental mechanisms that control the asymmetrical pattern of endochondral bone formation in fracture healing recapitulated the original asymmetry of development of a given bone because femur and tibia grow predominantly from their respective distal and proximal physis. These data further show that remodeling of the calcified cartilage produces a trabecular bone structure unique to fracture healing that provides the rapid regain in weight-bearing capacity to the injured bone.
To gain insight into the effect of diabetes on fracture healing, experiments were carried out focusing on chondrocyte apoptosis during the transition from cartilage to bone. Type 1 diabetes was induced in mice by multiple low-dose streptozotocin injections, and simple transverse fractures of the tibia or femur was carried out. Large-scale transcriptional profiling and gene set enrichment analysis were performed to examine apoptotic pathways on total RNA isolated from fracture calluses on days 12, 16, and 22, a period of endochondral bone formation when cartilage is resorbed and chondrocyte numbers decrease. Tumor necrosis factor α (TNF-α) protein levels were assessed by ELISA and caspase-3 by bioactivity assay. The role of TNF was examined by treating mice with the TNF-specific inhibitor pegsunercept. In vitro studies investigated the proapoptotic transcription factor FOXO1 in regulating TNF-induced apoptosis of chondrogenic ATDC5 and C3H10T1/2 cells as representative of differentiated chondrocytes, which are important during endochondral ossification. mRNA profiling revealed an upregulation of gene sets related to apoptosis in the diabetic group on day 16 when cartilage resorption is active but not day 12 or day 22. This coincided with elevated TNF-α protein levels, chondrocyte apoptosis, enhanced caspase-3 activity, and increased FOXO1 nuclear translocation (p < .05). Inhibition of TNF significantly reduced these parameters in the diabetic mice but not in normoglycemic control mice (p < .05). Silencing FOXO1 using siRNA in vitro significantly reduced TNF-induced apoptosis and caspase activity in differentiated chondrocytes. The mRNA levels of the proapoptotic genes caspase-3, caspase-8, caspase-9, and TRAIL were significantly reduced with silencing of FOXO1 in chondrocytic cells. Inhibiting caspase-8 and caspase-9 significantly reduced TNF-induced apoptosis in chondrogenic cells. These results suggest that diabetes causes an upregulation of proapoptotic genes during the transition from cartilage to bone in fracture healing. Diabetes increased chondrocyte apoptosis through a mechanism that involved enhanced production of TNF-α, which stimulates chondrocyte apoptosis and upregulates mRNA levels of apoptotic genes through FOXO1 activation. © 2010 American Society for Bone and Mineral Research.
Diabetes interferes with fracture repair; therefore, we investigated mechanisms of impaired fracture healing in a model of multiple low-dose streptozotocin-induced diabetes. Microarray and gene set enrichment analysis revealed an up-regulation of gene sets related to inflammation, including tumor necrosis factor (TNF) signaling in the diabetic group, when cartilage is being replaced by bone on day 16, but not on days 12 or 22. This change coincided with elevated osteoclast numbers and accelerated removal of cartilage in the diabetic group (P < 0.05), which was reflected by smaller callus size. When diabetic mice were treated with the TNF-specific inhibitor, pegsunercept, the number of osteoclasts, cartilage loss, and number of TNF-␣ and receptor activator for nuclear factor kB ligand positive chondrocytes were significantly reduced (P < 0.05). The transcription factor forkhead box 01 (FOXO1) was tested for mediating TNF stimulation of osteoclastogenic and inflammatory factors in bone morphogenetic protein 2 pretreated ATDC5 and C3H10T1/2 chondrogenic cells. Osteopenia associated with decreased bone mineral density is an important complication of type 1diabetes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.