The P-glycoprotein efflux pump, encoded by the ABCB1 gene, has been shown to alter concentrations of various antidepressants in the brain. In this study, we conducted a systematic review and meta-analysis to investigate the association between six ABCB1 single-nucleotide polymorphisms (SNPs; rs1045642, rs2032582, rs1128503, rs2032583, rs2235015, and rs2235040) and antidepressant treatment outcomes in individuals with major depressive disorder (MDD), including new data from the Canadian Biomarker and Integration Network for Depression (CAN-BIND-1) cohort. For the CAN-BIND-1 sample, we applied regression models to investigate the association between ABCB1 SNPs and antidepressant treatment response, remission, tolerability, and antidepressant serum levels. For the meta-analysis, we systematically summarized pharmacogenetic evidence of the association between ABCB1 SNPs and antidepressant treatment outcomes. Studies were included in the meta-analysis if they investigated at least one ABCB1 SNP in individuals with MDD treated with at least one antidepressant. We did not find a significant association between ABCB1 SNPs and antidepressant treatment outcomes in the CAN-BIND-1 sample. A total of 39 studies were included in the systematic review. In the meta-analysis, we observed a significant association between rs1128503 and treatment response (T vs. C-allele, odds ratio = 1.30, 95% confidence interval = 1.15-1.48, P value (adjusted) = 0.024, n = 2,526). We did not find associations among the six SNPs and treatment remission nor tolerability. Our findings provide limited evidence for an association between common ABCB1 SNPs and antidepressant outcomes, which do not support the implementation of ABCB1 genotyping to inform antidepressant treatment at this time. Future research, especially on rs1128503, is recommended.
Caffeine is the most consumed drug in the world, and it is commonly used by children. Despite being considered relatively safe, caffeine can have marked effects on sleep. Studies in adults suggest that genetic variants in the adenosine A2A receptor (ADORA2A, rs5751876) and cytochrome P450 1A (CYP1A, rs2472297, rs762551) loci are correlated with caffeine-associated sleep disturbances and caffeine intake (dose), but these associations have not been assessed in children. We examined the independent and interaction effects of daily caffeine dose and candidate variants in ADORA2A and CYP1A on the sleep quality and duration in 6112 children aged 9–10 years who used caffeine and were enrolled in the Adolescent Brain Cognitive Development (ABCD) study. We found that children with higher daily caffeine doses had lower odds of reporting > 9 h of sleep per night (OR = 0.81, 95% CI = 0.74–0.88, and p = 1.2 × 10−6). For every mg/kg/day of caffeine consumed, there was a 19% (95% CI = 12–26%) decrease in the odds of children reporting > 9 h of sleep. However, neither ADORA2A nor CYP1A genetic variants were associated with sleep quality, duration, or caffeine dose. Likewise, genotype by caffeine dose interactions were not detected. Our findings suggest that a daily caffeine dose has a clear negative correlation with sleep duration in children, but this association is not moderated by the ADORA2A or CYP1A genetic variation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.