The limited success in understanding the pathophysiology of major depression may result from excessive focus on the dysfunctioning of neurons, as compared with other types of brain cells. Therefore, we examined the role of dynamic alterations in microglia activation status in the development of chronic unpredictable stress (CUS)-induced depressive-like condition in rodents. We report that following an initial period (2-3 days) of stress-induced microglial proliferation and activation, some microglia underwent apoptosis, leading to reductions in their numbers within the hippocampus, but not in other brain regions, following 5 weeks of CUS exposure. At that time, microglia displayed reduced expression of activation markers as well as dystrophic morphology. Blockade of the initial stress-induced microglial activation by minocycline or by transgenic interleukin-1 receptor antagonist overexpression rescued the subsequent microglial apoptosis and decline, as well as the CUS-induced depressive-like behavior and suppressed neurogenesis. Similarly, the antidepressant drug imipramine blocked the initial stress-induced microglial activation as well as the CUS-induced microglial decline and depressive-like behavior. Treatment of CUS-exposed mice with either endotoxin, macrophage colony-stimulating factor or granulocyte-macrophage colony-stimulating factor, all of which stimulated hippocampal microglial proliferation, partially or completely reversed the depressive-like behavior and dramatically increased hippocampal neurogenesis, whereas treatment with imipramine or minocycline had minimal or no anti-depressive effects, respectively, in these mice. These findings provide direct causal evidence that disturbances in microglial functioning has an etiological role in chronic stress-induced depression, suggesting that microglia stimulators could serve as fast-acting anti-depressants in some forms of depressive and stress-related conditions.
Several lines of evidence implicate the pro-inflammatory cytokine interleukin-1 (IL-1) in the etiology and pathophysiology of major depression. To explore the role of IL-1 in chronic stress-induced depression and some of its underlying biological mechanisms, we used the chronic mild stress (CMS) model of depression. Mice subjected to CMS for 5 weeks exhibited depressive-like symptoms, including decreased sucrose preference, reduced social exploration and adrenocortical activation, concomitantly with increased IL-1b levels in the hippocampus. In contrast, mice with deletion of the IL-1 receptor type I (IL-1rKO) or mice with transgenic, brain-restricted overexpression of IL-1 receptor antagonist did not display CMS-induced behavioral or neuroendocrine changes. Similarly, whereas in wild-type (WT) mice CMS significantly reduced hippocampal neurogenesis, measured by incorporation of bromodeoxyuridine (BrdU) and by doublecortin immunohistochemistry, no such decrease was observed IL-1rKO mice. The blunting of the adrenocortical activation in IL-1rKO mice may play a causal role in their resistance to depression, because removal of endogenous glucocorticoids by adrenalectomy also abolished the depressive-like effects of CMS, whereas chronic administration of corticosterone for 4 weeks produced depressive symptoms and reduced neurogenesis in both WT and IL-1rKO mice. The effects of CMS on both behavioral depression and neurogenesis could be mimicked by exogenous subcutaneous administration of IL-1b via osmotic minipumps for 4 weeks. These findings indicate that elevation in brain IL-1 levels, which characterizes many medical conditions, is both necessary and sufficient for producing the high incidence of depression found in these conditions. Thus, procedures aimed at reducing brain IL-1 levels may have potent antidepressive actions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.