Inconel 718 has high strength, which makes it difficult to cut using conventional cutting methods. In the present study, the laser inert gas cutting of Inconel 718 was simulated by finite element analysis software ANSYS. Finite element method was used to predict thermal stress and kerf width formation during the laser cutting process. ANSYS Parameter Design Language was used to model the Gaussiandistributed heat flux from the laser beam acting on the workpiece. The removal of melted material during laser cutting to form the kerf width was modeled by employing the element death methodology in ANSYS. In addition, laser cutting was simulated at continuous wave (CW) and the effects of laser power and cutting speed on kerf width were investigated. A series of experiments were carried out to verify the predictions. The temperature fields on the workpiece were measured using thermocouples. The kerf width size was measured using a profile projector, whereas the metallurgical and morphological changes at the cutting edge were examined using scanning electron microscopy. A good correlation was found between the simulation and experimental results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.